Utilizing AI and Machine Learning for Predictive Analysis of Post-Treatment Cancer Recurrence

Authors

  • Muhammad Umer Qayyum Washington University of Science and Technology, Virginia, USA Author
  • Muhammad Fahad Washington University of Science and Technology, Virginia, USA Author
  • Nasrullah Abbasi. Washington University of Science and Technology, Virginia, USA Author https://orcid.org/0009-0009-5389-8030

DOI:

https://doi.org/10.60087/jklst.vol2.n3.p599

Keywords:

Cancer Recurrence, Artificial Intelligence, Machine Learning, Predictive Modeling, Oncology, Personalized Medicine, AI in Healthcare.

Abstract

In oncology, recurrence after treatment is one of the major challenges, related to patients' survival and quality of life. Conventionally, prediction of cancer relapse has always relied on clinical observation with statistical model support, which almost fails to explain the complex, multifactorial nature of tumor recurrence. This research explores how AI and ML models may increase the accuracy and reliability of recurrence prediction in cancer. Therefore, AI and ML create new opportunities not only for personalized medicine but also for proactive management of patients through analyzing large volumes of data on genetics, clinical manifestations, and treatment. The paper describes the various AI and ML techniques for pattern identification and outcome prediction in cancer patients using supervised and unsupervised learning. Clinical implications provide an opportunity to review how early interventions could happen and the design of treatment planning.

Downloads

Download data is not yet available.

References

Rodríguez-Vicente, A. E., Lumbreras, E., Hernández, J. M., Martín, M., Calles, A., Otín, C. L., Algarra, S. M., Páez, D., & Taron, M. (2016). Pharmacogenetics and pharmacogenomics as tools in cancer therapy. Drug Metabolism and Personalized Therapy, 31(1), 25–34. https://doi.org/10.1515/dmpt-2015-0042

Abbasi, N. . (2024). Artificial Intelligence in Remote Monitoring and Telemedicine. Journal of Artificial Intelligence General Science (JAIGS) ISSN:3006-4023, 1(1), 258–272. https://doi.org/10.60087/jaigs.v1i1.202

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017b). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056

BRCA Gene Mutations: Cancer risk and Genetic Testing fact sheet. (2024, July 19). Cancer.gov. https://www.cancer.gov/about-cancer/causes-prevention/genetics/brca-fact-sheet#:~:text=Among%20women%20who%20have%20been,such%20a%20change%20(8).

Radiation therapy for cancer. (2019, January 8). Cancer.gov. https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy

Molina-Montes, E., Ubago-Guisado, E., Petrova, D., Amiano, P., Chirlaque, M., Agudo, A., & Sánchez, M. (2021). The role of diet, alcohol, BMI, and physical activity in cancer mortality: Summary findings of the EPIC study. Nutrients, 13(12), 4293. https://doi.org/10.3390/nu13124293

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z

Matsuo, K., Purushotham, S., Jiang, B., Mandelbaum, R. S., Takiuchi, T., Liu, Y., & Roman, L. D. (2019). Survival outcome prediction in cervical cancer: Cox models vs deep-learning model. American Journal of Obstetrics and Gynecology, 220(4), 381.e1-381.e14. https://doi.org/10.1016/j.ajog.2018.12.030

Abbasi, N., Fnu, N., & Zeb, S. (2023, June 14). AI IN HEALTHCARE: USING CUTTING-EDGE TECHNOLOGIES TO REVOLUTIONIZE VACCINE DEVELOPMENT AND DISTRIBUTION. http://jurnalmahasiswa.com/index.php/Jurihum/article/view/1544

Vadapalli, S., Abdelhalim, H., Zeeshan, S., & Ahmed, Z. (2022). Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Briefings in Bioinformatics, 23(5). https://doi.org/10.1093/bib/bbac191

Bi, W. L., Hosny, A., Schabath, M. B., Giger, M. L., Birkbak, N. J., Mehrtash, A., Allison, T., Arnaout, O., Abbosh, C., Dunn, I. F., Mak, R. H., Tamimi, R. M., Tempany, C. M., Swanton, C., Hoffmann, U., Schwartz, L. H., Gillies, R. J., Huang, R. Y., & Aerts, H. J. W. L. (2019). Artificial intelligence in cancer imaging: Clinical challenges and applications. CA a Cancer Journal for Clinicians, 69(2), 127–157. https://doi.org/10.3322/caac.21552

Zhu, J., Liu, M., & Li, X. (2022). Progress on deep learning in digital pathology of breast cancer: a narrative review. Gland Surgery, 11(4), 751–766. https://doi.org/10.21037/gs-22-11

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402-2410. https://doi.org/10.1001/jama.2016.17216

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646-674. https://doi.org/10.1016/j.cell.2011.02.013

He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30-36. https://doi.org/10.1038/s41591-018-0307-0

Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8-17. https://doi.org/10.1016/j.csbj.2014.11.005

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539

Abbasi, N., Fnu, N., & Zeb, S. (2023a, June 13). AI in Healthcare: Integrating Advanced Technologies with Traditional Practices for Enhanced Patient Care. https://www.journal.mediapublikasi.id/index.php/bullet/article/view/4468

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A., Ciompi, F., Ghafoorian, M., ... & van der Laak, J. A. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005

Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J., Bruynseels, A., ... & Denniston, A. K. (2019). A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. The Lancet Digital Health, 1(6), e271-e297. https://doi.org/10.1016/S2589-7500(19)30123-2

Rajpurkar, P., Irvin, J., Ball, R. L., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C. P., Patel, B. N., Yeom, K. W., Shpanskaya, K., Blankenberg, F. G., Seekins, J., Amrhein, T. J., Mong, D. A., Halabi, S. S., Zucker, E. J., . . . Lungren, M. P. (2018). Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Medicine, 15(11), e1002686. https://doi.org/10.1371/journal.pmed.1002686

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135-1144). https://doi.org/10.1145/2939672.2939778

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56. https://doi.org/10.1038/s41591-018-0300-7

Zhang, Y., & Wu, D. (2020). AI in neurology: Clinical applications and ethical considerations. Nature Reviews Neurology, 16(6), 335-345. https://doi.org/10.1038/s41582-020-0361-8

Downloads

Published

20-12-2023

How to Cite

Muhammad Umer , Q., Muhammad , F., & Nasrullah , A. (2023). Utilizing AI and Machine Learning for Predictive Analysis of Post-Treatment Cancer Recurrence. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 2(3), 599-613. https://doi.org/10.60087/jklst.vol2.n3.p599

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>