Classification of obstructive sleep apnea using bio-control feedback EEG biosensor device

Authors

  • Sean Lennon Independent Researcher, Karnataka, India Author
  • Srushti Kulkarni Independent Researcher, Karnataka, India Author

DOI:

https://doi.org/10.60087/jklst.v3.n4.p247

Abstract

Obstructive sleep apnea (OSA) is a common sleeping disorder that can result in shortness of breath due to the relaxation of upper respiratory tract muscles while the patient is asleep. This leads to low blood oxygen saturation and, hence, apnea. OSA is associated with higher risks of hypertension, coronary artery disease, arrhythmias, cardiac failure, and stroke, affecting 5% of the global human population. Thus, early detection and treatment of OSA are crucial. Nowadays, OSA is diagnosed by analyzing EEG signals. Electroencephalographic (EEG) signals are important for monitoring brain activity; this paper focuses on patients with OSA. Unfavorable spikes in the graph, such as head movements, electrical interferences, or even muscle spasms, may interfere with the general EEG frequencies being targeted. Our research was centered on designing a cost-effective electronic circuitry for this device that would efficiently acquire and process EEG signals. We used various methods to improve the device's functionality and accuracy, including rectifications in noise reduction, signal filtering, and structural correction through ICA decomposition.  ⁤⁤Our system, theoretically, achieved a high accuracy rate of 97.14% using Support Vector Machines.

Downloads

Download data is not yet available.

References

Patil, S. P., Ayappa, I. A., Caples, S. M., Kimoff, R. J., Patel, S. R., & Harrod, C. G. (2019). Treatment of adult obstructive sleep apnea with positive airway pressure: An American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. Journal of Clinical Sleep Medicine, 15(2), 301–334. https://doi.org/10.5664/jcsm.7638

Yeghiazarians, Y., Jneid, H., Tamis-Holland, J. E., Redline, S., Brown, D. L., El-Sherif, N., ... & Win, S. (2021). Obstructive sleep apnea and cardiovascular disease: A scientific statement from the American Heart Association. Circulation, 144(3), e56–e67. https://doi.org/10.1161/CIR.0000000000000988

Osman, A. M., Carter, S. G., Carberry, J. C., & Eckert, D. J. (2018). Obstructive sleep apnea: Current perspectives. Nature and Science of Sleep, 10, 21–34. https://doi.org/10.2147/NSS.S124657

eMedicine. (2021, October). Obstructive sleep apnea (OSA) treatment & management: Approach considerations, nasal CPAP therapy, BiPAP therapy. Retrieved from https://emedicine.medscape.com/article/295807-treatment?form=fpf

Mayo Clinic. (2018). Polysomnography (sleep study) - Mayo Clinic. Mayoclinic.org. https://www.mayoclinic.org/tests-procedures/polysomnography/about/pac-20394877

Zhang, C., Liu, Y., Zhao, L., Huang, S., Wang, Y., Zhang, J., ... & Peng, Z. (2023). EEG power spectral density in NREM sleep is associated with the degree of hypoxia in patients with obstructive sleep apnea. Nature and Science of Sleep, 15, 979–992. https://doi.org/10.2147/nss.s433820

Chilmakuri, L., Mishra, A. K., Shokeen, D., Gupta, P., Wadhwa, H. H., & Dhingra, K. (2024). A wearable EMG sensor for continuous wrist neuromuscular activity for monitoring. Journal of Knowledge and Learning in Science and Technology, 3(4), 148–159. https://doi.org/10.60087/jklst.v3.n4.p148

Slowik, J. M., Sankari, A., & Collen, J. F. (2024). Pathophysiology of OSA. StatPearls - NCBI Bookshelf. https://doi.org/Obstructive_Sleep_Apnea-NCBI

Osman, A. M., Carter, S. G., Carberry, J. C., & Eckert, D. J. (2018). Obstructive sleep apnea: Current perspectives. Nature and Science of Sleep, 10, 21–34. https://doi.org/10.2147/NSS.S124657

Chandna, R., Bansal, A., Kumar, A., Hardia, S., Daramola, O., Sahu, A., Verma, K., & Dhingra, K. (2024). Skin disease classification using two-path deep transfer learning models. Journal of Knowledge and Learning in Science and Technology, 3(4), 169–187. https://doi.org/10.60087/jklst.v3.n4.p169

Le, V. L., Ngo, T. T., Nguyen, H. T., & Bui, T. V. (2023). Real-time detection of sleep apnea based on breathing sounds and prediction reinforcement using home noises: Algorithm development and validation. Journal of Medical Internet Research, 25, e44818. https://doi.org/10.2196/44818

Li, X., Leung, F. H. F., Su, S., & Ling, S. H. (2022). Sleep apnea detection using multi-error-reduction classification system with multiple bio-signals. Sensors, 22(15), 5560. https://doi.org/10.3390/s22155560

Bahr-Hamm, K., Abriani, A., Anwar, A. R., Ding, H., Muthuraman, M., & Gouveris, H. (2023). Using entropy of snoring, respiratory effort, and electrocardiography signals during sleep for OSA detection and severity classification. Sleep Medicine, 111, 21–27. https://doi.org/10.1016/j.sleep.2023.09.005

Gupte, P., Dhingra, K., & Saloni, V. (2024). Precision gene editing strategies with CRISPR-Cas9 for advancing cancer immunotherapy and Alzheimer’s disease. Journal of Knowledge and Learning in Science and Technology, 3(4), 11–21. https://doi.org/10.60087/jklst.v3.n4.p11

Pundlik, A., Verma, S., & Dhingra, K. (2024). Neural pathways involved in emotional regulation and emotional intelligence. Journal of Knowledge and Learning in Science and Technology, 3(3), 165–192. https://doi.org/10.60087/jklst.vol3.n3.p.165-192

Pandya, H. J., Hyun, M., Sudhakar, P., Zuniga, E. S., Garcia, E. J., & Bashir, R. (2017). Label-free electrical sensing of bacteria in eye wash samples: A step towards point-of-care detection of pathogens in patients with infectious keratitis. Biosensors and Bioelectronics, 91, 32–39. https://doi.org/10.1016/j.bios.2016.12.035

Rosen, I. M., Kirsch, D. B., Chervin, R. D., Carden, K. A., Ramar, K., Aurora, R. N., & Malhotra, R. K. (2018). Clinical use of a home sleep apnea test: An updated American Academy of Sleep Medicine position statement. Journal of Clinical Sleep Medicine, 14(12), 2075–2077. https://doi.org/10.5664/jcsm.7540

Setty, A. R. (2017). Underestimation of sleep apnea with home sleep apnea testing compared to in-laboratory sleep testing. Journal of Clinical Sleep Medicine, 13(4), 531–532. https://doi.org/10.5664/jcsm.6534

Kulkarni, S., Dhingra, K., & Verma, S. (2024). Applications of CMUT technology in medical diagnostics: From photoacoustic to ultrasonic imaging. International Journal of Science and Research, 13(6), 1264–1269. https://doi.org/10.60087/ijsr.v13.n6.p1264-1269

Shah, A., & Mittal, S. (2014). Invasive electroencephalography monitoring: Indications and presurgical planning. Annals of Indian Academy of Neurology, 17(5), 89. https://doi.org/10.4103/0972-2327.128668

GhavamiNejad, P., GhavamiNejad, A., Zheng, H., Dhingra, K., Samarikhalaj, M., & Poudineh, M. (2022). A conductive hydrogel microneedle-based assay integrating PEDOT

and Ag-Pt nanoparticles for real-time, enzyme-less, and electrochemical sensing of glucose. Advanced Healthcare Materials, 12(1). https://doi.org/10.1002/adhm.202202362

Safavieh, M., Kaul, V., Khetani, S., & Sadeghi, N. (2017). Paper microchip with a graphene-modified silver nano-composite electrode for electrical sensing of microbial pathogens. Nanoscale, 9(5), 1852–1861. https://doi.org/10.1039/c6nr06417e

Guntupalli, R., Verma, S., & Dhingra, K. (2024). Impact of healthcare digitization: Systems approach for integrating biosensor devices and electronic health with artificial intelligence. American Scientific Research Journal for Engineering, Technology, and Sciences, 98(1), 246–257. https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/10786/2789

Kuo, C.-F., Tsai, C.-H., Lin, Y.-C., Liang, T.-K., Huang, H.-H., & Hu, S. Y. (2023). Machine learning approaches for predicting sleep arousal response based on heart rate variability, oxygen saturation, and body profiles. Digital Health, 9, 20552076231205744. https://doi.org/10.1177/20552076231205744

Upside Down Labs. (2024). DIY Neuroscience Kit Basic—upsidedownlabs.github.io documentation. Upsidedownlabs.github.io. https://docs.upsidedownlabs.tech/kits/diy-neuroscience/basic/index.html

TMSi. (2022, April 14). The 10-20 system for EEG. TMSi Blog. https://info.tmsi.com/blog/the-10-20-system-for-eeg

Backyard Brains. (n.d.). BYB Spike Recorder. Backyardbrains.com. https://backyardbrains.com/products/spikerecorder

Shah, A., & Mittal, S. (2014). Invasive electroencephalography monitoring: Indications and presurgical planning. Annals of Indian Academy of Neurology, 17(5), 89. https://doi.org/10.4103/0972-2327.128668

Pandya, H. J., Sudhakar, P., Hyun, M., Ding, X., Zuniga, E., Garcia, E., & Bashir, R. (2017). A microfluidic platform for drug screening in a 3D cancer microenvironment. Biosensors and Bioelectronics, 94, 632–642. https://doi.org/10.1016/j.bios.2017.03.054

Odinotski, S., Wong, S., Zhu, X., Yu, Y., Burmistrov, I., & Ivanov, N. (2022). A conductive hydrogel-based microneedle platform for real-time pH measurement in live animals. Small, 18(45). https://doi.org/10.1002/smll.202200201

Rayi, A., & Murr, N. (2021). Electroencephalogram. PubMed. https://www.ncbi.nlm.nih.gov/books/NBK563295

Lopes, F., & Silva, D. (2022). EEG analysis: Theory and practice. BME.UNC.edu. https://bme.unc.edu/wp-content/uploads/sites/917/2022/11/EEG_explanation.pdf

Dongre, A., Nale, T., Ramavajhala, A., Mahanta, D., Sharma, O., Wadhwa, H. H., & Verma, S. (2024). The evolution of transdermal drug delivery: From patches to smart microneedle-biosensor systems. Journal of Knowledge and Learning in Science and Technology, 3(4), 160–168. https://doi.org/10.60087/jklst.vol3.n4.p160

Congedo, M., Korczowski, L., Delorme, A., & Lopes, F. (2016). Spatio-temporal common pattern: A companion method for ERP analysis in the time domain. Journal of Neuroscience Methods, 267, 74–88. https://doi.org/10.1016/j.jneumeth.2016.04.008

Klaus, H., Rosemann, M., & Gable, G. G. (2000). What is ERP? Information Systems Frontiers, 2(2), 141–162. https://doi.org/10.1023/A:1026543906354

Spencer, K. M., Dien, J., & Donchin, E. (2001). Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology, 38(2), 343–358. https://doi.org/10.1111/1469-8986.3820343

Kumar, J. S., & Bhuvaneswari, P. (2012). Analysis of electroencephalography (EEG) signals and its categorization – A study. Procedia Engineering, 38, 2525–2536. https://doi.org/10.1016/j.proeng.2012.06.298

Mehta, A., Alaiashy, O., Kumar, P., Tamilinian, V., Besong, S., Balpande, S., Verma, S., & Dhingra, K. (2024). Advancing model-based systems engineering in biomedical and aerospace research: A comprehensive review and future directions. Journal of Knowledge and Learning in Science and Technology, 3(4), 133–147. https://doi.org/10.60087/jklst.v3.n4.p133

Kazim, I., Gande, T., Reyher, E., Gyatsho Bhutia, K., Dhingra, K., & Verma, S. (2024). Advancements in sequencing technologies: From genomic revolution to single-cell insights in precision medicine. Journal of Knowledge and Learning in Science and Technology, 3(4), 108–124. https://doi.org/10.60087/jklst.v3.n4.p108

Mignard, F. (2005). About the Nyquist frequency. GAIA. Retrieved June 30, 2024, from https://www.dlsi.ua.es/~pps/A_Imprimir/GAIA/About_the_Nyquist_frequency.pdf

IEEE Xplore. (2018, December 1). Automated system for epileptic EEG detection using iterative filtering. IEEE Journals & Magazine. https://ieeexplore.ieee.org/abstract/document/8542765

IEEE Xplore. (2017, June 1). Optimized estimation of power spectral density. IEEE Conference Publication. https://ieeexplore.ieee.org/abstract/document/8250588

Islam, M. K., Rastegarnia, A., & Yang, Z. (2016). Methods for artifact detection and removal from scalp EEG: A review. Neurophysiologie Clinique/Clinical Neurophysiology, 46(4–5), 287–305. https://doi.org/10.1016/j.neucli.2016.07.002

Calhoun, V. D., Liu, J., & Adalı, T. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage, 45(1), S163–S172. https://doi.org/10.1016/j.neuroimage.2008.10.057

Takacs, A., Zink, N., Wolff, N., Münchau, A., Mückschel, M., & Beste, C. (2020). Connecting EEG signal decomposition and response selection processes using the theory of event coding framework. Human Brain Mapping, 41(10), 2862–2877. https://doi.org/10.1002/hbm.24983

IEEE Xplore. (2015, May 1). Efficient obstructive sleep apnea classification based on EEG signals. IEEE Conference Publication. https://ieeexplore.ieee.org/abstract/document/7160186

Periketi, P., Kaur, K., Naseer Vaid, F., Sree M., Y., Madhu, M., Verma, S., & Dhingra, K. (2024). Blood-brain barrier-on-a-chip permeation to model neurological diseases using microfluidic biosensors. Journal of Knowledge and Learning in Science and Technology, 3(4), 78–93. https://doi.org/10.60087/jklst.v3.n4.p78

Newson, J. J., & Thiagarajan, T. C. (2019). EEG frequency bands in psychiatric disorders: A review of resting-state studies. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00521

Osman, A. M., Carter, S. G., Carberry, J. C., & Eckert, D. J. (2018). Obstructive sleep apnea: Current perspectives. Nature and Science of Sleep. https://www.dovepress.com/obstructive-sleep-apnea-current-perspectives-peer-reviewed-fulltext-article-NSS

Downloads

Published

25-12-2024

How to Cite

Lennon , S. ., & Kulkarni, S. (2024). Classification of obstructive sleep apnea using bio-control feedback EEG biosensor device. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 3(4), 247-259. https://doi.org/10.60087/jklst.v3.n4.p247

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>