Transforming Neurological Disease Modeling and Therapy with 3D Bioprinting

Authors

  • Vibhav Sai Kandula Next Gen International School Author
  • Saloni Verma Author

DOI:

https://doi.org/10.60087/jklst.v4.n2.011

Abstract

Three-dimensional (3D) bioprinting is transforming neuroscience, tissue engineering, and regenerative medicine by enabling the precise fabrication of complex, functional biological structures. This review provides a comprehensive overview of the latest advances in 3D bioprinting for neural applications, including brain tumor modeling, neurodegenerative disease research, peripheral nervous system (PNS) repair, and cancer drug delivery. We discuss the principles and techniques of major bioprinting methods including extrusion-based, inkjet, laser-assisted, multimaterial, and coaxial bioprinting. The unique advantages are highlighted for engineering neural tissues and disease models. Special attention is given to the development of patient-specific brain tumor organoids, innovative scaffolds for neurodegenerative disease modeling, and bioprinted nerve guidance conduits for PNS regeneration. The review also addresses the challenges of vascularization, cell viability, and clinical translation, and explores future directions integrating 3D bioprinting with tissue engineering and digital technologies for personalized medicine. By bridging critical gaps in disease modeling and neural repair, 3D bioprinting holds the promise to revolutionize research and therapy for neurological and oncological disorders.

Downloads

Download data is not yet available.

References

Qiu, Z., Yu, Z., Xu, T., Wang, L., Meng, N., Jin, H., & Xu, B. (2022). Novel Nano-Drug Delivery System for Brain Tumor Treatment. Cells, 11(23), 3761. https://doi.org/10.3390/cells11233761.

Calabrese, G., De Luca, G., Nocito, G., Rizzo, M. G., Lombardo, S. P., Chisari, G., Forte, S., Sciuto, E. L., & Conoci, S. (2021). Carbon Dots: An Innovative Tool for Drug Delivery in Brain Tumors. International Journal of Molecular Sciences, 22(21), 11783. https://doi.org/10.3390/ijms222111783.

KREUTER, J. (2007). Nanoparticles—a historical perspective. International Journal of Pharmaceutics, 331(1), 1–10. https://doi.org/10.1016/j.ijpharm.2006.10.021.

Mehrabian, A., Mashreghi, M., Dadpour, S., Badiee, A., Arabi, L., Hoda Alavizadeh, S., Alia Moosavian, S., & Reza Jaafari, M. (2022). Nanocarriers Call the Last Shot in the Treatment of Brain Cancers. Technology in Cancer Research & Treatment, 21, 15330338221080974. https://doi.org/10.1177/15330338221080974.

Hersh, A. M., Alomari, S., & Tyler, B. M. (2022). Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. International Journal of Molecular Sciences, 23(8), 4153. https://doi.org/10.3390/ijms23084153.

Periketi, P.; Kaur, K. .; Naseer Vaid, F. .; Sree M, Y. .; Madhu, M. .; Verma, S. .; Dhingra, K. . Blood Brain Barrier-on-a-Chip Permeation to Model Neurological Diseases Using Microfluidic Biosensors. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 78-93. https://doi.org/10.60087/jklst.v3.n4.p78.

Zhang, J., Wehrle, E., Rubert, M., & Müller, R. (2021). 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. International Journal of Molecular Sciences, 22(8), 3971. https://doi.org/10.3390/ijms22083971.

Ravanbakhsh, H., Karamzadeh, V., Bao, G., Mongeau, L., Juncker, D., & Zhang, Y. S. (2021). Emerging Technologies in Multi‐Material Bioprinting. Advanced Materials, 33(49), 2104730. https://doi.org/10.1002/adma.202104730.

Kazim, I.; Gande, T.; Reyher, E. .; Gyatsho Bhutia, K. .; Dhingra, K.; Verma, S. Advancements in Sequencing technologies:: From Genomic Revolution to Single-Cell Insights in Precision Medicine. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 108-124. https://doi.org/10.60087/jklst.v3.n4.p108.

Rey, F., Barzaghini, B., Nardini, A., Bordoni, M., Gian Vincenzo Zuccotti, Cereda, C., Manuela Teresa Raimondi, & Carelli, S. (2020). Advances in Tissue Engineering and Innovative Fabrication Techniques for 3-D-Structures: Translational Applications in Neurodegenerative Diseases. 9(7), 1636–1636. https://doi.org/10.3390/cells9071636.

Soman, S., & Vijayavenkataraman, S. (2020). Perspectives on 3D Bioprinting of Peripheral Nerve Conduits. International Journal of Molecular Sciences, 21(16), 5792. https://doi.org/10.3390/ijms21165792.

Germain, N., Dhayer, M., Dekiouk, S., & Marchetti, P. (2022). Current Advances in 3D Bioprinting for Cancer Modeling and Personalized Medicine. International Journal of Molecular Sciences, 23(7), 3432. https://doi.org/10.3390/ijms23073432.

Ikada, Y. (2006). Challenges in tissue engineering. Journal of the Royal Society Interface, 3(10), 589–601. https://doi.org/10.1098/rsif.2006.0124.

Yuksel, E., Choo, J., Wettergreen, M., & Liebschner, M. (2005). Challenges in Soft Tissue Engineering. Seminars in Plastic Surgery, 19(03), 261–270. https://doi.org/10.1055/s-2005-919721.

H. J. Pandya et al., “Label-free electrical sensing of bacteria in eye wash samples: A step towards point-of-care detection of pathogens in patients with infectious keratitis,” Biosensors and Bioelectronics, vol. 91, pp. 32–39, May 2017, doi: https://doi.org/10.1016/j.bios.2016.12.035.

Tripathi, S.; Verma, S.; Dhingra, K. Microfluidics and Personalized Medicine towards Diagnostic Precision and Treatment Efficacy. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 213-223. https://doi.org/10.60087/jklst.v3.n4.p213.

M. Safavieh et al., “Paper microchip with a graphene-modified silver nano-composite electrode for electrical sensing of microbial pathogens,” Nanoscale, vol. 9, no. 5, pp. 1852–1861, 2017, doi: https://doi.org/10.1039/c6nr06417e.

Dongre, A. .; Nale, T. . .; Ramavajhala, A.; Mahanta, D. .; Sharma, . O. .; Wadhwa, H. H. .; Dhingra, K. .; Verma, S. . The Evolution of Transdermal Drug Delivery: From Patches to Smart Microneedle-Biosensor Systems. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 160-168. https://doi.org/10.60087/jklst.vol3.n4.p160.

Sharma, A.; Verma, S.; Dhingra, K. Microneedles-Mediated Transdermal Drug Delivery Techniques in Modern Medicine. J. Knowl. Learn. Sci. Technol. 2024, 4 (1), 20-31. https://doi.org/10.60087/jklst.v4.n1.003.

H. J. Pandya et al., “A microfluidic platform for drug screening in a 3D cancer microenvironment,” Biosensors and Bioelectronics, vol. 94, pp. 632–642, Aug. 2017, doi: https://doi.org/10.1016/j.bios.2017.03.054.

GhavamiNejad P, GhavamiNejad A, Zheng H, Dhingra K, Samarikhalaj M, Poudineh M., “A Conductive Hydrogel Microneedle‐Based Assay Integrating PEDOT:PSS and Ag‐Pt Nanoparticles for Real‐Time, Enzyme‐Less, and Electro-chemical Sensing of Glucose,” Advanced Healthcare Materials, vol. 12, no. 1, Oct. 2022, doi: https://doi.org/10.1002/adhm.202202362.

Gupte, P.; Dhingra, K.; Saloni , V. Precision Gene Editing Strategies With CRISPR-Cas9 for Advancing Cancer Immunotherapy and Alzheimer’s Disease. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 11-21. https://doi.org/10.60087/jklst.v3.n4.p11.

Ruthwik Guntupalli, Saloni Verma and Karan Dhingra 2024. Impact of Healthcare Digitization: Systems Approach for Integrating Biosensor Devices and Electronic Health with Artificial Intelligence. American Scientific Research Journal for Engineering, Technology, and Sciences. 98, 1 (Aug. 2024), 246–257, https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/10786/2789.

Chandna, R. .; Bansal, A.; Kumar, A.; Hardia, S.; Daramola, O.; Sahu, A.; Verma, K.; Dhingra, K.; Verma, S. Skin Disease Classification Using Two Path Deep Transfer Learning Models. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 169-187. https://doi.org/10.60087/jklst.v3.n4.p169.

Mehta, A.; da Silva Dias, L.; Espinal, M.; Jillellamudi, R.; Mathew, R. .; Chauhan, A.; Dhingra, K.; Verma, S. E-Health Implementation Challenges: A Comprehensive Review of Digital Healthcare in the United States. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 233–246. https://doi.org/10.60087/jklst.v2.n3.p233.

Zheng, W. (2001). Neurotoxicology of the Brain Barrier System: New Implications. Journal of Toxicology: Clinical Toxicology, 39(7), 711–719. https://doi.org/10.1081/clt-100108512.

Badawi, A. H., Mohamad, N. A., Stanslas, J., Kirby, B. P., Vasantha Kumari Neela, Ramasamy, R., & Hamidon Basri. (2023). In Vitro Blood-Brain Barrier Models for Neuroinfectious Diseases: A Narrative Review. Current Neuropharmacology, 22(8), 1344–1373. https://doi.org/10.2174/1570159x22666231207114346.

S. Odinotski et al., “A Conductive Hydrogel‐Based Microneedle Platform for Real‐Time pH Measurement in Live Animals,” Small, vol. 18, no. 45, Sep. 2022, doi: https://doi.org/10.1002/smll.202200201.

Chilmakuri, L.; Mishra, A. K.; Shokeen, D. .; Gupta, P. .; Wadhwa, H. H.; Dhingra, K. .; Verma, S. A Wearable EMG Sensor for Continuous Wrist Neuromuscular Activity for Monitoring. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 148-159. https://doi.org/10.60087/jklst.v3.n4.p148.

Raina, D.; Dawange, A.; Bandha, T.; Kaur, A.; Wasekar, R.; Verma, K.; Verma, S.; Dhingra, K. Convoluted Neural Network and Transfer Learning Algorithm for Improved Brain Tumor Classifications in MRI. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 200-212. https://doi.org/10.60087/jklst.v3.n4.p200.

Downloads

Published

23-07-2025

How to Cite

Sai Kandula, V., & Verma, S. (2025). Transforming Neurological Disease Modeling and Therapy with 3D Bioprinting. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 4(2), 125–133. https://doi.org/10.60087/jklst.v4.n2.011

Most read articles by the same author(s)

1 2 > >>