Microfluidics and personalized medicine towards diagnostic precision and treatment efficacy

Authors

  • Surina Tripathi 1Independent Researcher, Massachusetts, United States of America Author
  • Saloni Verma Department of Biomedical Engineering, Cornell University, New York, United States of America Author
  • Karan Dhingra Department of Biomedical Engineering, University of Ottawa, Ontario, Canada Author

DOI:

https://doi.org/10.60087/jklst.v3.n4.p213

Abstract

Microfluidics is a science that flows at the microscopic scale. However, it is also mature technology that has already been applied to everyday technology such as e-readers, inkjet printers, and lab-on-a-chip devices that can shrink a whole laboratory down to a few square inches. Microfluidics can be applied to personalized medicine in addition to everyday technology. Treatment for individuals is adjusted to their specific characteristics through personalized medicine. Based on this biomarkers and drug screening are used for maximizing efficiency and reducing adverse effects. The need for well-regulated, sustainable, and detailed methods is constantly needed to reduce reagent use and improve overall healthcare outcomes. Here we show the development of microfluidic technologies to advance personalized medicine by analyzing microRNAs, and other biomarkers through high-throughput screening, integrating advanced data analytics to match a particular treatment to a patient's unique genetic profile and response.

Downloads

Download data is not yet available.

References

Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. 2000 Apr 7;288(5463):113-6. doi: 10.1126/science.288.5463.113.

Zhu, H.; Fohlerová, Z.; Pekárek, J.; Basova, E.; Neužil, P. Recent Advances in Lab-On-a-Chip Technologies for Viral Diagnosis. Biosensors and Bioelectronics 2020, 153, 112041. doi: 10.1016/j.bios.2020.112041.

Regmi, S.; Poudel, C.; Adhikari, R.; Luo, K. Q. Applications of Microfluidics and Organ-On-a-Chip in Cancer Research. Biosensors 2022, 12 (7), 459. doi:10.3390/bios12070459.

Gupte, P.; Dhingra, K.; Saloni , V. Precision Gene Editing Strategies With CRISPR-Cas9 for Advancing Cancer Immunotherapy and Alzheimer’s Disease. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 11-21. https://doi.org/10.60087/jklst.v3.n4.p11.

Scott, S.; Abul-Husn, N.; Owusu Obeng, A.; Sanderson, S.; Gottesman, O. Implementation and Utilization of Genetic Testing in Personalized Medicine. Pharmacogenomics and Personalized Medicine 2014, 227. doi: 10.2147/pgpm.s48887.

Niculescu, A.-G.; Chircov, C.; Bîrcă, A. C.; Grumezescu, A. M. Fabrication and Applications of Microfluidic Devices: A Review. International Journal of Molecular Sciences 2021, 22 (4), 2011. doi: 10.3390/ijms22042011.

Duncombe, T. A.; Tentori, A. M.; Herr, A. E. Microfluidics: Reframing Biological Enquiry. Nature Reviews Molecular Cell Biology 2015, 16 (9), 554–567. doi: 10.1038/nrm4041.

M. Safavieh et al., “Paper microchip with a graphene-modified silver nano-composite electrode for electrical sensing of microbial pathogens,” Nanoscale, vol. 9, no. 5, pp. 1852–1861, 2017, doi: https://doi.org/10.1039/c6nr06417e.

Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Tung, Y.-C. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes. Journal of Visualized Experiments 2018, No. 139. doi: 10.3791/57868.

Iliescu, C.; Taylor, H.; Avram, M.; Miao, J.; Franssila, S. A Practical Guide for the Fabrication of Microfluidic Devices Using Glass and Silicon. Biomicrofluidics 2012, 6 (1), 016505. doi: 10.1063/1.3689939.

Jigar Panchal, H.; Kent, N. J.; Knox, A. J. S.; Harris, L. F. Microfluidics in Haemostasis: A Review. Molecules 2020, 25 (4). doi: 10.3390/molecules25040833.

Gharib, G.; Bütün, İ.; Muganlı, Z.; Kozalak, G.; Namlı, İ.; Sarraf, S. S.; Ahmadi, V. E.; Toyran, E.; van Wijnen, A. J.; Koşar, A. Biomedical Applications of Microfluidic Devices: A Review. Biosensors 2022, 12 (11), 1023. doi: 10.3390/bios12111023.

H. J. Pandya et al., “A microfluidic platform for drug screening in a 3D cancer microenvironment,” Biosensors and Bioelectronics, vol. 94, pp. 632–642, Aug. 2017, doi: https://doi.org/10.1016/j.bios.2017.03.054.

Kimia Asadi Jozani; Kouthouridis, S.; Hirota, J. A.; Zhang, B. Next‐Generation Preclinical Models of Lung Development, Physiology and Disease. The Canadian Journal of Chemical Engineering 2022, 101 (1), 18–40. doi: 10.1002/cjce.24581.

Thanh Huyen Phan; Shi, H.; Denes, C. E.; Cole, A. J.; Wang, Y.; Yuen Yee Cheng; Hesselson, D.; Roelofs, S. H.; Graham Gregory Neely; Jang, J.-H.; Chrzanowski, W. Advanced Pathophysiology Mimicking Lung Models for Accelerated Drug Discovery. 2023, 27 (1). doi: 10.1186/s40824-023-00366-x.

Yu, M.-C.; Sun, Y.-S. A Droplet-Based Microfluidic Platform for High-Throughput Culturing of Yeast Cells in Various Conditions. Micromachines 2024, 15 (8), 1034–1034. doi: 10.3390/mi15081034.

Vladisaljević, G. T. Droplet Microfluidics for High-Throughput Screening and Directed Evolution of Biomolecules. Micromachines 2024, 15 (8), 971–971. doi: 10.3390/mi15080971.

Dewandre, A.; Rivero-Rodriguez, J.; Vitry, Y.; Sobac, B.; Scheid, B. Microfluidic Droplet Generation Based on Non-Embedded Co-Flow-Focusing Using 3D Printed Nozzle. Scientific Reports 2020, 10 (1). doi: 10.1038/s41598-020-77836-y.

Sohrabi, S.; kassir, N.; Keshavarz Moraveji, M. Droplet Microfluidics: Fundamentals and Its Advanced Applications. RSC Advances 2020, 10 (46), 27560–27574. doi: 10.1039/d0ra04566g.

Trinh, T.N.D.; Do, H.D.K.; Nam, N.N.; Dan, T.T.; Trinh, K.T.L.; Lee, N.Y. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals 2023, 16, 937. doi: 10.3390/ph16070937

Maged, A.; Abdelbaset, R.; Mahmoud, A. A.; Elkasabgy, N. A. Merits and Advances of Microfluidics in the Pharmaceutical Field: Design Technologies and Future Prospects. Drug Delivery 2022, 29 (1), 1549–1570. doi: 10.1080/10717544.2022.2069878.

Muhammedin Deliorman; Dima Samer Ali; Qasaimeh, M. A. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications. Biomedical Engineering and Computational Biology 2023, 14. doi: 10.1177/11795972231214387.

Periketi, P.; Kaur, K. .; Naseer Vaid, F. .; Sree M, Y. .; Madhu, M. .; Verma, S. .; Dhingra, K. . Blood Brain Barrier-on-a-Chip Permeation to Model Neurological Diseases Using Microfluidic Biosensors. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 78-93. https://doi.org/10.60087/jklst.v3.n4.p78.

Ma, C.; Peng, Y.; Li, H.; Chen, W. Organ-On-a-Chip: A New Paradigm for Drug Development. Trends in Pharmacological Sciences 2021, 42 (2), 119–133. doi: 10.1016/j.tips.2020.11.009.

Leung, C. M.; de Haan, P.; Ronaldson-Bouchard, K.; Kim, G.-A.; Ko, J.; Rho, H. S.; Chen, Z.; Habibovic, P.; Jeon, N. L.; Takayama, S.; Shuler, M. L.; Vunjak-Novakovic, G.; Frey, O.; Verpoorte, E.; Toh, Y.-C. A Guide to the Organ-On-a-Chip. Nature Reviews Methods Primers 2022, 2 (1), 1–29. doi: 10.1038/s43586-022-00118-6.

Yang, S.; Hu, H.; Kung, H.; Zou, R.; Dai, Y.; Hu, Y.; Wang, T.; Lv, T.; Yu, J.; Li, F. Organoids: The Current Status and Biomedical Applications. MedComm 2023, 4 (3), e274. doi: 10.1002/mco2.274.

Nishat, S.; Jafry, A. T.; Martinez, A. W.; Awan, F. R. Paper-Based Microfluidics: Simplified Fabrication and Assay Methods. Sensors and Actuators B: Chemical 2021, 336, 129681. doi: 10.1016/j.snb.2021.129681.

H. J. Pandya et al., “Label-free electrical sensing of bacteria in eye wash samples: A step towards point-of-care detection of pathogens in patients with infectious keratitis,” Biosensors and Bioelectronics, vol. 91, pp. 32–39, May 2017, doi: https://doi.org/10.1016/j.bios.2016.12.035.

Anushka; Bandopadhyay, A.; Das, P. K. Paper Based Microfluidic Devices: A Review of Fabrication Techniques and Applications. The European Physical Journal Special Topics 2022. doi: 10.1140/epjs/s11734-022-00727-y.

Kulkarni S, Dhingra K, Verma S., "Applications of CMUT Technology in Medical Diagnostics: From Photoacoustic to Ultrasonic Imaging", International Journal of Science and Research (IJSR), Volume 13 Issue 6, June 2024, pp. 1264-1269, https://www.ijsr.net/ar-chive/v13i6/SR24619062609.pdf.

Amin Valiei; Javad Aminian-Dehkordi; Mohammad. Gut-On-a-Chip Models for Dissecting the Gut Microbiology and Physiology. APL bioengineering 2023, 7 (1), 011502–011502. doi: 10.1063/5.0126541.

Zheng, L.; Kelly, C. J.; Colgan, S. P. Physiologic Hypoxia and Oxygen Homeostasis in the Healthy Intestine. A Review in the Theme: Cellular Responses to Hypoxia. American Journal of Physiology-Cell Physiology 2015, 309 (6), C350–C360. doi: 10.1152/ajpcell.00191.2015.

GhavamiNejad P, GhavamiNejad A, Zheng H, Dhingra K, Samarikhalaj M, Poudineh M., “A Conductive Hydrogel Mi-croneedle‐Based Assay Integrating PEDOT:PSS and Ag‐Pt Nanoparticles for Real‐Time, Enzyme‐Less, and Electro-chemical Sensing of Glucose,” Advanced Healthcare Materials, vol. 12, no. 1, Oct. 2022, doi: https://doi.org/10.1002/adhm.202202362.

Yu, J.; Cai, P.; Chen, X. Structural Regulation of Myocytes in Engineered Healthy and Diseased Cardiac Models. ACS applied bio materials 2021, 4 (1), 267–276. doi: 10.1021/acsabm.0c01270.

Moragues, T.; Arguijo, D.; Beneyton, T.; Modavi, C.; Simutis, K.; Abate, A. R.; Baret, J.-C.; deMello, A. J.; Densmore, D.; Griffiths, A. D. Droplet-Based Microfluidics. Nature Reviews Methods Primers 2023, 3 (1), 1–22. doi: 10.1038/s43586-023-00212-3.

Zhang, Y.; Nguyen, N.-T. Magnetic Digital Microfluidics – a Review. Lab on a Chip 2017, 17 (6), 994–1008. doi: 10.1039/c7lc00025a.

Muthamilselvan, S.; Ramasami Sundhar Baabu, P.; Palaniappan, A. Microfluidics for Profiling MiRNA Biomarker Panels in AI-Assisted Cancer Diagnosis and Prognosis. Technology in Cancer Research & Treatment 2023, 22. doi: 10.1177/15330338231185284.

Francisco, S.; Martinho, V.; Ferreira, M.; Reis, A.; Moura, G.; Ana Raquel Soares; Manuel. The Role of MicroRNAs in Proteostasis Decline and Protein Aggregation during Brain and Skeletal Muscle Aging. International Journal of Molecular Sciences 2022, 23 (6), 3232–3232. doi: 10.3390/ijms23063232.

De Figueiredo, I.; Bartenlian, B.; Van der Rest, G.; Pallandre, A.; Halgand, F. Proteomics Methodologies: The Search of Protein Biomarkers Using Microfluidic Systems Coupled to Mass Spectrometry. Proteomes 2023, 11 (2), 19. doi: 10.3390/proteomes11020019.

Sanjay, S. T.; Fu, G.; Dou, M.; Xu, F.; Liu, R.; Qi, H.; Li, X. Biomarker Detection for Disease Diagnosis Using Cost-Effective Microfluidic Platforms. Analyst 2015, 140 (21), 7062–7081. doi: 10.1039/C5AN00780A.

Li, X.; Fan, X.; Li, Z.; Shi, L.; Liu, J.; Luo, H.; Wang, L.; Du, X.; Chen, W.; Guo, J.; Li, C.; Liu, S. Application of Microfluidics in Drug Development from Traditional Medicine. Biosensors 2022, 12 (10), 870. doi: 10.3390/bios12100870.

Sonker, M.; Sahore, V.; Woolley, A. T. Recent Advances in Microfluidic Sample Preparation and Separation Techniques for Molecular Biomarker Analysis: A Critical Review. Analytica Chimica Acta 2017, 986, 1–11. doi: 10.1016/j.aca.2017.07.043.

Kazim, I.; Gande, T.; Reyher, E. .; Gyatsho Bhutia, K. .; Dhingra, K.; Verma, S. Advancements in Sequencing technologies:: From Genomic Revolution to Single-Cell Insights in Precision Medicine. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 108-124. https://doi.org/10.60087/jklst.v3.n4.p108.

Dean, L. Clopidogrel Therapy and CYP2C19 Genotype. Nih.gov. doi: NBK84114.

Califf, R. M. Biomarker Definitions and Their Applications. Experimental Biology and Medicine 2018, 243 (3), 213–221. doi: 10.1177/1535370217750088.

Chandna, R. .; Bansal, A.; Kumar, A.; Hardia, S.; Daramola, O.; Sahu, A.; Verma, K.; Dhingra, K.; Verma, S. Skin Disease Classification Using Two Path Deep Transfer Learning Models. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 169-187. https://doi.org/10.60087/jklst.v3.n4.p169.

Ruthwik Guntupalli, Saloni Verma and Karan Dhingra 2024. Impact of Healthcare Digitization: Systems Approach for Integrating Biosensor Devices and Electronic Health with Artificial Intelligence. American Scientific Research Journal for Engineering, Technology, and Sciences. 98, 1 (Aug. 2024), 246–257, https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/10786/2789.

Kaur, S.; Kim, R.; Javagal, N.; Calderon, J.; Rodriguez, S.; Nithin Murugan; Kelsang Gyatsho Bhutia; Dhingra, K.; Verma, S. Precision Medicine with Data-Driven Approaches: A Framework for Clinical Translation. AIJMR - Advanced International Journal of Multidisciplinary Research 2024, 2 (5). doi: 10.62127/aijmr.2024.v02i05.1077.

Kumari, M.; Gupta, V.; Kumar, N.; Arun, R. Microfluidics-Based Nanobiosensors for Healthcare Monitoring. Molecular Biotechnology 2023. doi: 10.1007/s12033-023-00760-9.

Kulkarni, M. B.; Ayachit, N. H.; Aminabhavi, T. M. A Short Review on Miniaturized Biosensors for the Detection of Nucleic Acid Biomarkers. Biosensors 2023, 13 (3), 412–412. doi: 10.3390/bios13030412.

Chilmakuri, L.; Mishra, A. K.; Shokeen, D. .; Gupta, P. .; Wadhwa, H. H.; Dhingra, K. .; Verma, S. A Wearable EMG Sensor for Continuous Wrist Neuromuscular Activity for Monitoring. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 148-159. https://doi.org/10.60087/jklst.v3.n4.p148.

Pundlik, A.; Verma, S.; Dhingra, K. Neural Pathways Involved in Emotional Regulation and Emotional Intelligence. J. Knowl. Learn. Sci. Technol. 2024, 3 (3), 165-192. https://doi.org/10.60087/jklst.vol3.n3.p.165-192.

Imparato, G.; Urciuolo, F.; Netti, P. A. Organ on Chip Technology to Model Cancer Growth and Metastasis. Bioengineering 2022, 9 (1), 28. doi: 10.3390/bioengineering9010028.

Zuchowska, A.; Skorupska, S. Multi-Organ-On-Chip Approach in Cancer Research. Organs-on-a-Chip 2022, 4, 100014. doi: 10.1016/j.ooc.2021.100014.

S. Odinotski et al., “A Conductive Hydrogel‐Based Microneedle Platform for Real‐Time pH Measurement in Live Animals,” Small, vol. 18, no. 45, Sep. 2022, doi: https://doi.org/10.1002/smll.202200201.

Zhang, X.; Karim, M.; Hasan, M. M.; Hooper, J.; Wahab, R.; Roy, S.; Al-Hilal, T. A. Cancer-On-a-Chip: Models for Studying Metastasis. Cancers 2022, 14 (3), 648. doi: 10.3390/cancers14030648.

Lin, Y.; Zhou, Q.; Li, J.; Shu, J.; Qiu, Z.; Lin, Y.; Tang, D. Magnetic Graphene Nanosheet-Based Microfluidic Device for Homogeneous Real-Time Electronic Monitoring of Pyrophosphatase Activity Using Enzymatic Hydrolysate-Induced Release of Copper Ion. Analytical Chemistry 2015, 88 (1), 1030–1038. doi: 10.1021/acs.analchem.5b04005.

Ayşenur Bezelya; Berrin Küçüktürkmen; Asuman Bozkır. Microfluidic Devices for Precision Nanoparticle Production. Micro 2023, 3 (4), 822–866. doi: 10.3390/micro3040058.

Gimondi, S.; Ferreira, H.; Reis, R. L.; Neves, N. M. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation. ACS Nano 2023, 17 (15), 14205–14228. doi: 10.1021/acsnano.3c01117.

Li, X.; Wang, C.-Y. From Bulk, Single-Cell to Spatial RNA Sequencing. International Journal of Oral Science 2021, 13 (1). doi: 10.1038/s41368-021-00146-0.

Han, X.; Xu, X.; Yang, C.; Liu, G. Microfluidic Design in Single-Cell Sequencing and Application to Cancer Precision Medicine. Cell Reports Methods 2023, 3 (9), 100591–100591. doi: 10.1016/j.crmeth.2023.100591.

Nielsen, A. V.; Beauchamp, M. J.; Nordin, G. P.; Woolley, A. T. 3D Printed Microfluidics. Annual Review of Analytical Chemistry 2020, 13 (1), 45–65. doi: 10.1146/annurev-anchem-091619-102649.

Cheong, R.; Paliwal, S.; Levchenko, A. High Content Screening in Microfluidic Devices. Expert opinion on drug discovery 2010, 5 (8), 715–720. doi: 10.1517/17460441.2010.495116.

Mehta, A.; Alaiashy, O.; Kumar, P.; Tamilinian, V.; Besong, S.; Balpande, S.; Verma, S.; Dhingra, K. Advancing Model-Based Systems Engineering in Biomedical and Aerospace research:: A Comprehensive Review and Future Directions. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 133-147. https://doi.org/10.60087/jklst.v3.n4.p133.

Dongre, A. .; Nale, T. . .; Ramavajhala, A.; Mahanta, D. .; Sharma, . O. .; Wadhwa, H. H. .; Dhingra, K. .; Verma, S. . The Evolution of Transdermal Drug Delivery: From Patches to Smart Microneedle-Biosensor Systems. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 160-168. https://doi.org/10.60087/jklst.vol3.n4.p160.

Tony, A.; Badea, I.; Yang, C.; Liu, Y.; Wells, G.; Wang, K.; Yin, R.; Zhang, H.; Zhang, C. The Additive Manufacturing Approach to Polydimethylsiloxane (PDMS) Microfluidic Devices: Review and Future Directions. Polymers 2023, 15 (8), 1926–1926. doi: 10.3390/polym15081926.

Downloads

Published

25-12-2024

How to Cite

Tripathi, S., Verma, S., & Dhingra, K. (2024). Microfluidics and personalized medicine towards diagnostic precision and treatment efficacy. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 3(4), 213-223. https://doi.org/10.60087/jklst.v3.n4.p213

Most read articles by the same author(s)

1 2 > >>