Demystifying Deep Learning: Understanding the Inner Workings of Neural Network

Authors

  • Selvakumar Venkatasubbu New York Technology Partners, USA. Author
  • Sai Mani Krishna Sistla Soothsayer Analytics, USA Author

DOI:

https://doi.org/10.60087/jklst.vol1.n1.p129

Keywords:

Deep Learning, Neural Networks, Artificial Neurons, Activation Functions

Abstract

Deep learning has emerged as a powerful tool in various domains, revolutionizing fields such as image recognition, natural language processing, and autonomous driving. Despite its widespread applications, the inner workings of neural networks often remain opaque to many practitioners and enthusiasts. This paper aims to demystify deep learning by providing a comprehensive overview of the underlying principles and mechanisms. Beginning with the fundamental building blocks of artificial neurons and activation functions, we delve into the architecture of deep neural networks, elucidating concepts such as feedforward and backpropagation. Additionally, we explore advanced topics including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), shedding light on their applications and intricacies. By elucidating the core concepts and methodologies, this paper empowers readers to develop a deeper understanding of how neural networks operate, paving the way for more informed utilization and innovation in the realm of deep learning.

Downloads

Download data is not yet available.

Downloads

Published

14-06-2022

How to Cite

Venkatasubbu, S., & Sistla, S. M. K. (2022). Demystifying Deep Learning: Understanding the Inner Workings of Neural Network. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 1(1), 124-129. https://doi.org/10.60087/jklst.vol1.n1.p129

Most read articles by the same author(s)