Reinforcement Learning for Autonomous Data Pipeline Optimization in Cloud-Native Architectures
##doi.readerDisplayName##:
https://doi.org/10.60087/jklst.v4.n3.009关键词:
Reinforcement Learning, Data Pipeline Optimization, Cloud-Native Architectures, Autonomous Scheduling, Resource Management, Self-Adaptive Systems, Workflow Orchestration摘要
Efficient data pipeline management is critical for cloud-native architectures, where data velocity, volume, and variety challenge traditional orchestration methods. This study proposes a Reinforcement Learning (RL)-based framework for autonomous optimization of data pipelines, enabling dynamic task scheduling, resource allocation, and failure recovery without human intervention. The framework models pipeline operations as a sequential decision-making problem, where an RL agent learns optimal policies to maximize throughput, minimize latency, and reduce operational costs. Experiments conducted on simulated and real-world cloud-native workloads demonstrate that the RL-optimized pipelines achieve significant performance improvements compared to conventional static and heuristic-based scheduling strategies. This approach highlights the potential of intelligent, self-adaptive data pipelines for scalable, resilient, and cost-efficient cloud-native data processing.
##plugins.themes.default.displayStats.downloads##
参考
Sutton, R. S., & Barto, A. G. (2018). Reinforce-ment Learning: An Introduction (2nd ed.). MIT Press. [DOI: 10.5555/3312046](https://doi.org/10.5555/3312046)
Schulman, J., et al. (2017). Proximal Policy Op-timization Algorithms. arXiv:1707.06347. [DOI: 10.48550/arXiv.1707.06347](https://doi.org/10.48550/arXiv.1707.06347)
Mnih, V., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533. [DOI:10.1038/nature14236] (https://doi.org/10.1038/nature14236)
Mao, H., et al. (2016). Resource Management with Deep Reinforcement Learning. HotNets '16. [DOI: 10.1145/3005745.3005750](https://doi.org/10.1145/3005745.3005750)
Mirhoseini, A., et al. (2021). A Hierarchical Model for Device Placement. ASPLOS '21. [DOI: 10.1145/3445814.3446708](https://doi.org/10.1145/3445814.3446708)
Liu, S., et al. (2023). AutoScale: Reinforcement Learning for Real-Time Autoscaling in Microservices. ICDCS '23. [DOI: 10.1109/ICDCS54860.2023.00076](https://doi.org/10.1109/ICDCS54860.2023.00076)
Burns, B., et al. (2016). Designing Distributed Systems. O'Reilly. [ISBN: 978-1491983645](https://learning.oreilly.com/library/view/designing-distributed-systems/9781491983638/)
Verma, A., et al. (2015). Large-scale cluster management at Google with Borg. EuroSys '15. [DOI: 10.1145/2741948.2741964](https://doi.org/10.1145/2741948.2741964)
Kubernetes Autoscaling SIG. (2023). Vertical Pod Autoscaler: Architecture Deep Dive. [https://github.com/kubernetes/autoscaler](https://github.com/kubernetes/autoscaler)
Kleppmann, M. (2017). Designing Da-ta-Intensive Applications. O'Reilly. [ISBN: 978-1449373320](https://dataintensive.net/)
Carbone, P., et al. (2015). Apache Flink: Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull., 38(4). [http://sites.computer.org/debull/A15dec/p28.pdf](http://sites.computer.org/debull/A15dec/p28.pdf)
Kreps, J., et al. (2011). Kafka: a Distributed Messaging System for Log Processing. NetDB '11. [https://notes.stephenholiday.com/Kafka.pdf](https://notes.stephenholiday.com/Kafka.pdf)
Riley, G. F., & Henderson, T. R. (2010). The ns-3 Network Simulator. Modeling and Tools for Network Simulation, 15–34. [DOI: 10.1007/978-3-642-12331-3_2](https://doi.org/10.1007/978-3-642-12331-3_2)
SimPy Developers. (2023). SimPy: Discrete Event Simulation for Python. [https://simpy.readthedocs.io](https://simpy.readthedocs.io)
Alipourfard, O., et al. (2017). CherryPick: Adap-tively Unearthing the Best Cloud Configurations. SIGCOMM '17. [DOI: 10.1145/3098822.3098837](https://doi.org/10.1145/3098822.3098837)
Delimitrou, C., & Kozyrakis, C. (2014). Quasar: Resource-Efficient QoS-aware Cluster Management. ASPLOS '14. [DOI: 10.1145/2541940.2541941](https://doi.org/10.1145/2541940.2541941)
Gan, Y., et al. (2021). Sage: RL-Based Adaptive Microservice Scaling. EuroSys '21. [DOI: 10.1145/3447786.3456243](https://doi.org/10.1145/3447786.3456243)
Netflix Engineering. (2022). Cost Optimization for Stream Processing with Keystone. [https://netflixtechblog.com](https://netflixtechblog.com/cost-optimization-for-stream-processing-with-keystone-9f2368bbb4a9)
Lyu, F., et al. (2022). Dynamic Resource Alloca-tion at Alibaba. SIGMOD '22. [DOI: 10.1145/3514221.3522567](https://doi.org/10.1145/3514221.3522567)
AWS. (2023). Spot Instance Best Practices. [https://aws.amazon.com/ec2/spot/](https://aws.amazon.com/ec2/spot/)
Haarnoja, T., et al. (2018). Soft Actor-Critic Al-gorithms. ICML '18. [DOI: 10.48550/arXiv.1812.05905](https://doi.org/10.48550/arXiv.1812.05905)
Garcıa, J., & Fernández, F. (2015). Safe Explo-ration in Reinforcement Learning. JMLR, 16(1). [https://www.jmlr.org/papers/volume16/garcia15a/garcia15a.pdf](https://www.jmlr.org/papers/volume16/garcia15a/garcia15a.pdf)
##submission.downloads##
已出版
期次
栏目
##submission.license##
##submission.copyrightStatement##
##submission.license.cc.by4.footer##©2024 All rights reserved by the respective authors and JKLST.