Integration of Nanomaterial-Based Filtration and Smart Gas Sensing Systems for Enhanced Safety in Aviation Maintenance Environments
DOI:
https://doi.org/10.60087/jklst.vol4.n3.013Abstract
Maintenance workers in aviation constantly work with dangerous substances like hydrazine, JP-8, and AVGAS. The exposure to these chemicals over a long period of time can lead to the development of serious health problems. The current safety regulations in the field are still inadequate to provide complete protection for the workers during refueling and maintenance activities. This study explores how wearable technologies equipped with nanomaterial filters and gas detection sensors can improve both safety and productivity in the aviation industry. Nanomaterials such as graphene, carbon nanotubes (CNTs), and titanium dioxide (TiO₂) provide superior filtration performance because of their large surface area and ability to neutralize toxic compounds. In combination with electrochemical and metal-oxide sensors, these systems can continuously monitor air quality and instantly alert users when harmful gases are detected. The literature review and the available technologies are the major sources of information that this paper uses to justify the benefits of hybrid systems in aviation workplaces in terms of safety, efficiency, and eco-friendliness. It also presents the challenges that are still faced in the areas of weight, power consumption, and reliability over the long term, which are the reasons for the small-scale adoption. The main point is that when one combines nanomaterial filtration with advanced detection technology, the result will be a great reduction of occupational hazards and the increase of aviation safety equipment's lifespan.
Downloads
References
Wang, Y., Pan, C., Chu, W., Vipin, A. K., & Sun, L. (2019). Environmental remediation applications of carbon nanotubes and graphene oxide: adsorption and catalysis. Nanomaterials, 9(3), 439. https://doi.org/10.3390/nano9030439
Thi To Nguyen Vo, S. T., Lim, J. H., Kim, G. H., Koung M. Kim, Kweon, B., Kim, M., & Ahn, H. S. (2022). Nanostructured micro/mesoporous graphene: removal performance of volatile organic compounds. RSC Advances, 12, 14570–14577. https://doi.org/10.1039/D2RA01275H
Tajik, S., Askari, M. B., & Ahmadi, S. A. (2022). Electrochemical sensor based on ZnFe₂O₄/RGO nanocomposite for ultrasensitive detection of hydrazine in real samples. Nanomaterials, 12(3), 491. https://doi.org/10.3390/nano12030491
Althabaiti, S. A., et al. (2023). Selective thermal and photocatalytic decomposition of aqueous hydrazine to produce H₂ over Ag-modified TiO₂ nanomaterial. Nanomaterials, 13(14), 2076. https://doi.org/10.3390/nano13142076
Ghadage, P., et al. (2024). Bismuth ferrite-based acetone gas sensor: evaluation of graphene oxide loading. RSC Advances, 14, 1367–1376. https://doi.org/10.1039/D3RA06733E
Stull, J., & McManus, R. (2004). Evaluation of three chemical protective clothing materials for selected performance properties. Journal of ASTM International, 1(7), 1–12. https://doi.org/10.1520/jai12133
The Life Span of Respirator Filters and Cartridges - Learn more about respiratory safety,https://tinyurl.com/3s9x37js
Nithya, R., Thirunavukkarasu, A., Hemavathy, R.V. et al. Functionalized nanofibers in gas sorption process: a critical review on the challenges and prospective research. Environ Monit Assess 195, 969 (2023). https://doi.org/10.1007/s10661-023-11491-4
Xuan, Y., Zhao, L., Li, D., Pang, S., & An, Y. (2023). Recent advances in the applications of graphene materials for the oil and gas industry. RSC Advances, 13, 23169-23180. https://doi.org/10.1039/D3RA02781C
Khan, M. M., Filiz, V., Bengtson, G., Shishatskiy, S., Rahman, M., Lillepaerg, J., & Abetz, V. (2013b). Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM). Journal of Membrane Science, 436, 109–120. https://doi.org/10.1016/j.memsci.2013.02.032
Ma, W., Qi, H., Zhang, Y., Lin, M., Qiu, Y., & Zhang, C. (2023). Fabrication of Laminated Micro/Nano Filter and Its Application for Inhalable PM Removal. Polymers, 15(6), 1459. https://doi.org/10.3390/polym15061459
Zhao, J., Shen, W., Gao, Y., Lv, D., Song, W., & Tan, R. (2025). Optimization of SnO2-based MEMS sensor array for expeditious and precise categorization of meat types and freshness
status. Sensors and Actuators a Physical, 116680. https://doi.org/10.1016/j.sna.2025.116680
Masuda, Y. (2022). Recent advances in SnO2 nanostructure based gas sensors. Sensors and Actuators B Chemical, 364, 131876. https://doi.org/10.1016/j.snb.2022.131876
Yuan, Y., Liu, B., Li, H., Li, M., Song, Y., Wang, R., Wang, T., & Zhang, H. (2022). Flexible Wearable Sensors in Medical Monitoring. Biosensors, 12(12), 1069. https://doi.org/10.3390/bios12121069
Chen, Y., Wu, J., Xu, Z., Shen, W., Wu, Y., & Corriou, J. (2022). Computational assisted tuning of Co-doped TiO2 nanoparticles for ammonia detection at room temperatures. Applied Surface Science, 601, 154214. https://doi.org/10.1016/j.apsusc.2022.154214
Soomro, F., Memon, F. H., Khan, M. A., Iqbal, M., Ibrar, A., Memon, A. A., Lim, J. H., Choi, K. H., & Thebo, K. H. (2023). Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification. Membranes, 13(1), 64. https://doi.org/10.3390/membranes13010064
Wei, Y., Meng, H., Wu, Q., Bai, X., & Zhang, Y. (2023). TiO2-Based Photocatalytic Building Material for Air Purification in Sustainable and Low-Carbon Cities: A Review. Catalysts, 13(12), 1466. https://doi.org/10.3390/catal13121466
Chatterjee, S. G., Chatterjee, S., Ray, A. K., & Chakraborty, A. K. (2015). Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sensors and Actuators B Chemical, 221, 1170–1181. https://doi.org/10.1016/j.snb.2015.07.070
Hooshmand, S., Kassanos, P., Keshavarz, M., Duru, P., Kayalan, C. I., Kale, İ., & Bayazit, M. K. (2023). Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. Sensors, 23(20), 8648. https://doi.org/10.3390/s23208648
Panigrahi, P. K., Chandu, B., & Puvvada, N. (2024). Recent advances in nanostructured materials for application as gas sensors. ACS Omega. https://doi.org/10.1021/acsomega.3c06533
Hou, L., Duan, J., Xiong, F., Carraro, C., Shi, T., Maboudian, R., & Long, H. (2024). Low Power Gas Sensors: From Structure to Application. ACS sensors, 9(12), 6327–6357. https://doi.org/10.1021/acssensors.4c01642
Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P.,
Zhang, R., Wang, L., Liu, H., Liu, Y., & Ruan, R. (2020). Photocatalytic degradation of organic
pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 268,
https://doi.org/10.1016/j.jclepro.2020.121725
Teli, A. M., Mane, S. M., Beknalkar, S. A., Mishra, R. K., Jeon, W., & Shin, J. C. (2025). Graphene-Based Gas Sensors: State-of-the-Art Developments for Gas Sensing Applications. Micromachines, 16(8), 916. https://doi.org/10.3390/mi16080916
Sikri, N., Kumar, S., Behera, B., & Mehta, J. (2025). Graphene oxide/layered double
hydroxide composite as highly efficient and recyclable adsorbent for removal of ciprofloxacin
from aqueous phase. Frontiers inNanotechnology, 7. https://doi.org/10.3389/fnano.2025.1578620
Darwish, M. A., Abd-Elaziem, W., Elsheikh, A., & Zayed, A. A. Nanoscale Advances, 2024, 6, 4015–4046. https://doi.org/10.1039/D4NA00214H
Lee, S., Cho, A. R., Park, D., Kim, J. K., Han, K. S., Yoon, I., Lee, M. H., & Nah, J. (2019).
Reusable polybenzimidazole nanofiber membrane filter for highly breathable PM2.5 dust proof
mask. ACS Applied Materials & Interfaces, 11(3), 2750–
https://doi.org/10.1021/acsami.8b19741
Verma, R., Kumar, G., Upadhyay, V. V., Ratur, A., Rao, A., Kumar, A., & Boob, N. S.
(2024). Ecofriendly Approaches in nanomaterial synthesis for sustainable healthcare applications. E3S Web of Conferences, 511, 01024. https://doi.org/10.1051/e3sconf/202451101024
Zhang, L. & Zhejiang Shuren University. (2020). Applications, challenges and development
of nanomaterials and nanotechnology. In J.Chem.Soc.Pak. (Vol. 42, Issue 05, pp. 658–
Li, W., Xie, G., Huo, X., Que, L., Tai, H., Jiang, Y., & Su, Y. (2025). Piezoelectric
Composites for Gas Sensing: Evolution of Sensing and Transduction designs. Journal of
Materials Chemistry C. https://doi.org/10.1039/d5tc01383f
Liza, L., Kabir, M. H., Jiang, L., Jerrams, S., & Chen, S. (2023). The technology of wearable flexible textile-based strain sensors for monitoring multiple human motions: construction, patterning and performance. Sensors & Diagnostics, 2(6), 1414–1436. https://doi.org/10.1039/d3sd00194f
Chan, M., Estève, D., Fourniols, J., Escriba, C., & Campo, E. (2012). Smart wearable systems: Current status and future challenges. Artificial Intelligence in Medicine, 56(3), 137–156. https://doi.org/10.1016/j.artmed.2012.09.003
Saleem, H., Zaidi, S. J., Ismail, A. F., & Goh, P. S. (2021). Advances of nanomaterials for
air pollution remediation and their impacts on the environment. Chemosphere, 287,
https://doi.org/10.1016/j.chemosphere.2021.132083
Zafari, T., Sharafinia, S., Rashidi, A., Esrafili, M. D., Keyvani, B., & Mousavi, M. (2025).
Optimized adsorption of volatile organic compounds on graphene oxide and nanoporous
graphene activated with ZnCl2. PubMed. https://doi.org/10.1039/d5na00199d
Babaei, M., Anbia, M., & Kazemipour, M. (2019). STUDY OF THE EFFECT OF
FUNCTIONALIZATION OF CARBON NANOTUBES ON GAS SEPARATION. Brazilian
Journal of Chemical Engineering, 36(4), 1613–1620.
https://doi.org/10.1590/0104-6632.20190364s20180277
Tee, S. Y., Kong, J., Koh, J. J., Teng, C. P., Wang, X., Wang, X., Teo, S. L., Thitsartarn,
W., Han, M., & Seh, Z. W. (2024). Structurally and surficially activated TiO2 nanomaterials for photochemical reactions. Nanoscale. https://doi.org/10.1039/d4nr02342k
Yang, M., Ye, Z., Ren, Y., Farhat, M., & Chen, P.-Y. (2023). Recent Advances in Nanomaterials Used for Wearable Electronics. Micromachines, 14(3), 603. https://doi.org/10.3390/mi14030603
Khatoon, U. T., & Velidandi, A. (2025). An Overview on the Role of Government Initiatives in Nanotechnology Innovation for Sustainable Economic Development and Research Progress. Sustainability, 17(3), 1250. https://doi.org/10.3390/su17031250
Ali Bostani, Navruzbek Shavkatov, K.Sathishkumar, A. Kamalaveni, Syedzagiriya S, & Md. Zubair Rahman AMJ. (2025). Energy-Efficient Wireless Sensor Networks for Smart Healthcare Monitoring and Predictive Analytics. National Journal of Antennas and Propagation, 7(1), 235-252. https://doi.org/10.31838/NJAP/07.01.27
Khan, M. A. H., Rao, M. V., & Li, Q. (2019). Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO₂, SO₂ and H₂S. Sensors (Basel, Switzerland), 19(4), 905. https://doi.org/10.3390/s19040905
Korves, T., Johnson, D., Jones, B., Watson, J., Wolk, D., & Hwang, G. (2011). Detection of
respiratory viruses on air filters from aircraft. Letters in Applied Microbiology, 53(3), 306–
https://doi.org/10.1111/j.1472-765x.2011.03107.x
Kočí, M., Izsák, T., Vanko, G., Sojková, M., Hrdá, J., Szabó, O., Husák, M., Végsö, K., Varga, M., & Kromka, A. (2023). Improved gas sensing capabilities of MOS2/Diamond heterostructures at room temperature. ACS Applied Materials & Interfaces, 15(28), 34206–34214. https://doi.org/10.1021/acsami.3c04438
Yin, Z., Yang, Y., Hu, C. et al. Wearable respiratory sensors for health monitoring. NPG Asia Mater 16, 8 (2024). https://doi.org/10.1038/s41427-023-00513-9
Shin, Y., Hong, E., Yoo, G., He, F., Miyauchi, M., & Weon, S. (2025). Photo-Regenerable
antimicrobial air filter using monolithic CU-Grafted TiO2 nanotube mesh. Environmental
Science & Technology, 59(37), 20061–20074. https://doi.org/10.1021/acs.est.5c05296
Nguyen, Thai Hoang (2024). A Novel Nanocomposite for Building Façades. RMIT University. Thesis. https://doi.org/10.25439/rmt.26104018
Kritzler, M., Bäckman, M., Tenfält, A., & Michahelles, F. (2015). Wearable technology as a solution for workplace safety. Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia. https://doi.org/10.1145/2836041.2836062
Kao, J. (1990). Practical Modeling of Filter Filtration Efficiency. Contributions to Tobacco & Nicotine Research, 14(6), 1990. 341-352. https://doi.org/10.2478/cttr-2013-0611
Wang, C., Yin, L., Zhang, L., Xiang, D., & Gao, R. (2010). Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors, 10(3), 2088-2106. https://doi.org/10.3390/s100302088
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online)

This work is licensed under a Creative Commons Attribution 4.0 International License.
©2024 All rights reserved by the respective authors and JKLST.



