Integration of Nanomaterial-Based Filtration and Smart Gas Sensing Systems for Enhanced Safety in Aviation Maintenance Environments

Authors

  • Hassan Tanvir Author
  • Muhammad Ibrahim Author

DOI:

https://doi.org/10.60087/jklst.vol4.n3.013

Abstract

Maintenance workers in aviation constantly work with dangerous substances like hydrazine, JP-8, and AVGAS. The exposure to these chemicals over a long period of time can lead to the development of serious health problems. The current safety regulations in the field are still inadequate to provide complete protection for the workers during refueling and maintenance activities. This study explores how wearable technologies equipped with nanomaterial filters and gas detection sensors can improve both safety and productivity in the aviation industry. Nanomaterials such as graphene, carbon nanotubes (CNTs), and titanium dioxide (TiO₂) provide superior filtration performance because of their large surface area and ability to neutralize toxic compounds. In combination with electrochemical and metal-oxide sensors, these systems can continuously monitor air quality and instantly alert users when harmful gases are detected. The literature review and the available technologies are the major sources of information that this paper uses to justify the benefits of hybrid systems in aviation workplaces in terms of safety, efficiency, and eco-friendliness. It also presents the challenges that are still faced in the areas of weight, power consumption, and reliability over the long term, which are the reasons for the small-scale adoption. The main point is that when one combines nanomaterial filtration with advanced detection technology, the result will be a great reduction of occupational hazards and the increase of aviation safety equipment's lifespan.

Downloads

Download data is not yet available.

References

Wang, Y., Pan, C., Chu, W., Vipin, A. K., & Sun, L. (2019). Environmental remediation applications of carbon nanotubes and graphene oxide: adsorption and catalysis. Nanomaterials, 9(3), 439. https://doi.org/10.3390/nano9030439

Thi To Nguyen Vo, S. T., Lim, J. H., Kim, G. H., Koung M. Kim, Kweon, B., Kim, M., & Ahn, H. S. (2022). Nanostructured micro/mesoporous graphene: removal performance of volatile organic compounds. RSC Advances, 12, 14570–14577. https://doi.org/10.1039/D2RA01275H

Tajik, S., Askari, M. B., & Ahmadi, S. A. (2022). Electrochemical sensor based on ZnFe₂O₄/RGO nanocomposite for ultrasensitive detection of hydrazine in real samples. Nanomaterials, 12(3), 491. https://doi.org/10.3390/nano12030491

Althabaiti, S. A., et al. (2023). Selective thermal and photocatalytic decomposition of aqueous hydrazine to produce H₂ over Ag-modified TiO₂ nanomaterial. Nanomaterials, 13(14), 2076. https://doi.org/10.3390/nano13142076

Ghadage, P., et al. (2024). Bismuth ferrite-based acetone gas sensor: evaluation of graphene oxide loading. RSC Advances, 14, 1367–1376. https://doi.org/10.1039/D3RA06733E

Stull, J., & McManus, R. (2004). Evaluation of three chemical protective clothing materials for selected performance properties. Journal of ASTM International, 1(7), 1–12. https://doi.org/10.1520/jai12133

The Life Span of Respirator Filters and Cartridges - Learn more about respiratory safety,https://tinyurl.com/3s9x37js

Nithya, R., Thirunavukkarasu, A., Hemavathy, R.V. et al. Functionalized nanofibers in gas sorption process: a critical review on the challenges and prospective research. Environ Monit Assess 195, 969 (2023). https://doi.org/10.1007/s10661-023-11491-4

Xuan, Y., Zhao, L., Li, D., Pang, S., & An, Y. (2023). Recent advances in the applications of graphene materials for the oil and gas industry. RSC Advances, 13, 23169-23180. https://doi.org/10.1039/D3RA02781C

Khan, M. M., Filiz, V., Bengtson, G., Shishatskiy, S., Rahman, M., Lillepaerg, J., & Abetz, V. (2013b). Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM). Journal of Membrane Science, 436, 109–120. https://doi.org/10.1016/j.memsci.2013.02.032

Ma, W., Qi, H., Zhang, Y., Lin, M., Qiu, Y., & Zhang, C. (2023). Fabrication of Laminated Micro/Nano Filter and Its Application for Inhalable PM Removal. Polymers, 15(6), 1459. https://doi.org/10.3390/polym15061459

Zhao, J., Shen, W., Gao, Y., Lv, D., Song, W., & Tan, R. (2025). Optimization of SnO2-based MEMS sensor array for expeditious and precise categorization of meat types and freshness

status. Sensors and Actuators a Physical, 116680. https://doi.org/10.1016/j.sna.2025.116680

Masuda, Y. (2022). Recent advances in SnO2 nanostructure based gas sensors. Sensors and Actuators B Chemical, 364, 131876. https://doi.org/10.1016/j.snb.2022.131876

Yuan, Y., Liu, B., Li, H., Li, M., Song, Y., Wang, R., Wang, T., & Zhang, H. (2022). Flexible Wearable Sensors in Medical Monitoring. Biosensors, 12(12), 1069. https://doi.org/10.3390/bios12121069

Chen, Y., Wu, J., Xu, Z., Shen, W., Wu, Y., & Corriou, J. (2022). Computational assisted tuning of Co-doped TiO2 nanoparticles for ammonia detection at room temperatures. Applied Surface Science, 601, 154214. https://doi.org/10.1016/j.apsusc.2022.154214

Soomro, F., Memon, F. H., Khan, M. A., Iqbal, M., Ibrar, A., Memon, A. A., Lim, J. H., Choi, K. H., & Thebo, K. H. (2023). Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification. Membranes, 13(1), 64. https://doi.org/10.3390/membranes13010064

Wei, Y., Meng, H., Wu, Q., Bai, X., & Zhang, Y. (2023). TiO2-Based Photocatalytic Building Material for Air Purification in Sustainable and Low-Carbon Cities: A Review. Catalysts, 13(12), 1466. https://doi.org/10.3390/catal13121466

Chatterjee, S. G., Chatterjee, S., Ray, A. K., & Chakraborty, A. K. (2015). Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sensors and Actuators B Chemical, 221, 1170–1181. https://doi.org/10.1016/j.snb.2015.07.070

Hooshmand, S., Kassanos, P., Keshavarz, M., Duru, P., Kayalan, C. I., Kale, İ., & Bayazit, M. K. (2023). Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. Sensors, 23(20), 8648. https://doi.org/10.3390/s23208648

Panigrahi, P. K., Chandu, B., & Puvvada, N. (2024). Recent advances in nanostructured materials for application as gas sensors. ACS Omega. https://doi.org/10.1021/acsomega.3c06533

Hou, L., Duan, J., Xiong, F., Carraro, C., Shi, T., Maboudian, R., & Long, H. (2024). Low Power Gas Sensors: From Structure to Application. ACS sensors, 9(12), 6327–6357. https://doi.org/10.1021/acssensors.4c01642

Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P.,

Zhang, R., Wang, L., Liu, H., Liu, Y., & Ruan, R. (2020). Photocatalytic degradation of organic

pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 268,

https://doi.org/10.1016/j.jclepro.2020.121725

Teli, A. M., Mane, S. M., Beknalkar, S. A., Mishra, R. K., Jeon, W., & Shin, J. C. (2025). Graphene-Based Gas Sensors: State-of-the-Art Developments for Gas Sensing Applications. Micromachines, 16(8), 916. https://doi.org/10.3390/mi16080916

Sikri, N., Kumar, S., Behera, B., & Mehta, J. (2025). Graphene oxide/layered double

hydroxide composite as highly efficient and recyclable adsorbent for removal of ciprofloxacin

from aqueous phase. Frontiers inNanotechnology, 7. https://doi.org/10.3389/fnano.2025.1578620

Darwish, M. A., Abd-Elaziem, W., Elsheikh, A., & Zayed, A. A. Nanoscale Advances, 2024, 6, 4015–4046. https://doi.org/10.1039/D4NA00214H

Lee, S., Cho, A. R., Park, D., Kim, J. K., Han, K. S., Yoon, I., Lee, M. H., & Nah, J. (2019).

Reusable polybenzimidazole nanofiber membrane filter for highly breathable PM2.5 dust proof

mask. ACS Applied Materials & Interfaces, 11(3), 2750–

https://doi.org/10.1021/acsami.8b19741

Verma, R., Kumar, G., Upadhyay, V. V., Ratur, A., Rao, A., Kumar, A., & Boob, N. S.

(2024). Ecofriendly Approaches in nanomaterial synthesis for sustainable healthcare applications. E3S Web of Conferences, 511, 01024. https://doi.org/10.1051/e3sconf/202451101024

Zhang, L. & Zhejiang Shuren University. (2020). Applications, challenges and development

of nanomaterials and nanotechnology. In J.Chem.Soc.Pak. (Vol. 42, Issue 05, pp. 658–

. https://jcsp.org.pk/PublishedVersion/f7845589-394c-478e-aae3-4346169943f4Manuscript%20no%203,%20Final%20Galley%20Proof%20of%2012199%20%28Ling%20Zhang%29.pdf

Li, W., Xie, G., Huo, X., Que, L., Tai, H., Jiang, Y., & Su, Y. (2025). Piezoelectric

Composites for Gas Sensing: Evolution of Sensing and Transduction designs. Journal of

Materials Chemistry C. https://doi.org/10.1039/d5tc01383f

Liza, L., Kabir, M. H., Jiang, L., Jerrams, S., & Chen, S. (2023). The technology of wearable flexible textile-based strain sensors for monitoring multiple human motions: construction, patterning and performance. Sensors & Diagnostics, 2(6), 1414–1436. https://doi.org/10.1039/d3sd00194f

Chan, M., Estève, D., Fourniols, J., Escriba, C., & Campo, E. (2012). Smart wearable systems: Current status and future challenges. Artificial Intelligence in Medicine, 56(3), 137–156. https://doi.org/10.1016/j.artmed.2012.09.003

Saleem, H., Zaidi, S. J., Ismail, A. F., & Goh, P. S. (2021). Advances of nanomaterials for

air pollution remediation and their impacts on the environment. Chemosphere, 287,

https://doi.org/10.1016/j.chemosphere.2021.132083

Zafari, T., Sharafinia, S., Rashidi, A., Esrafili, M. D., Keyvani, B., & Mousavi, M. (2025).

Optimized adsorption of volatile organic compounds on graphene oxide and nanoporous

graphene activated with ZnCl2. PubMed. https://doi.org/10.1039/d5na00199d

Babaei, M., Anbia, M., & Kazemipour, M. (2019). STUDY OF THE EFFECT OF

FUNCTIONALIZATION OF CARBON NANOTUBES ON GAS SEPARATION. Brazilian

Journal of Chemical Engineering, 36(4), 1613–1620.

https://doi.org/10.1590/0104-6632.20190364s20180277

Tee, S. Y., Kong, J., Koh, J. J., Teng, C. P., Wang, X., Wang, X., Teo, S. L., Thitsartarn,

W., Han, M., & Seh, Z. W. (2024). Structurally and surficially activated TiO2 nanomaterials for photochemical reactions. Nanoscale. https://doi.org/10.1039/d4nr02342k

Yang, M., Ye, Z., Ren, Y., Farhat, M., & Chen, P.-Y. (2023). Recent Advances in Nanomaterials Used for Wearable Electronics. Micromachines, 14(3), 603. https://doi.org/10.3390/mi14030603

Khatoon, U. T., & Velidandi, A. (2025). An Overview on the Role of Government Initiatives in Nanotechnology Innovation for Sustainable Economic Development and Research Progress. Sustainability, 17(3), 1250. https://doi.org/10.3390/su17031250

Ali Bostani, Navruzbek Shavkatov, K.Sathishkumar, A. Kamalaveni, Syedzagiriya S, & Md. Zubair Rahman AMJ. (2025). Energy-Efficient Wireless Sensor Networks for Smart Healthcare Monitoring and Predictive Analytics. National Journal of Antennas and Propagation, 7(1), 235-252. https://doi.org/10.31838/NJAP/07.01.27

Khan, M. A. H., Rao, M. V., & Li, Q. (2019). Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO₂, SO₂ and H₂S. Sensors (Basel, Switzerland), 19(4), 905. https://doi.org/10.3390/s19040905

Korves, T., Johnson, D., Jones, B., Watson, J., Wolk, D., & Hwang, G. (2011). Detection of

respiratory viruses on air filters from aircraft. Letters in Applied Microbiology, 53(3), 306–

https://doi.org/10.1111/j.1472-765x.2011.03107.x

Kočí, M., Izsák, T., Vanko, G., Sojková, M., Hrdá, J., Szabó, O., Husák, M., Végsö, K., Varga, M., & Kromka, A. (2023). Improved gas sensing capabilities of MOS2/Diamond heterostructures at room temperature. ACS Applied Materials & Interfaces, 15(28), 34206–34214. https://doi.org/10.1021/acsami.3c04438

Yin, Z., Yang, Y., Hu, C. et al. Wearable respiratory sensors for health monitoring. NPG Asia Mater 16, 8 (2024). https://doi.org/10.1038/s41427-023-00513-9

Shin, Y., Hong, E., Yoo, G., He, F., Miyauchi, M., & Weon, S. (2025). Photo-Regenerable

antimicrobial air filter using monolithic CU-Grafted TiO2 nanotube mesh. Environmental

Science & Technology, 59(37), 20061–20074. https://doi.org/10.1021/acs.est.5c05296

Nguyen, Thai Hoang (2024). A Novel Nanocomposite for Building Façades. RMIT University. Thesis. https://doi.org/10.25439/rmt.26104018

Kritzler, M., Bäckman, M., Tenfält, A., & Michahelles, F. (2015). Wearable technology as a solution for workplace safety. Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia. https://doi.org/10.1145/2836041.2836062

Kao, J. (1990). Practical Modeling of Filter Filtration Efficiency. Contributions to Tobacco & Nicotine Research, 14(6), 1990. 341-352. https://doi.org/10.2478/cttr-2013-0611

Wang, C., Yin, L., Zhang, L., Xiang, D., & Gao, R. (2010). Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors, 10(3), 2088-2106. https://doi.org/10.3390/s100302088

Downloads

Published

29-10-2025

How to Cite

Tanvir, H., & Ibrahim, M. (2025). Integration of Nanomaterial-Based Filtration and Smart Gas Sensing Systems for Enhanced Safety in Aviation Maintenance Environments. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 4(3), 128-137. https://doi.org/10.60087/jklst.vol4.n3.013