Elastic Data Warehousing: Adapting To Fluctuating Workloads With Cloud-Native Technologies
DOI:
https://doi.org/10.60087/jklst.vol2.n3.p301Keywords:
Artificial Intelligence, Data Warehousing, Data Integration, Automation, Cloud NativeAbstract
This research focuses on the development of elastic data warehousing while adapting to changing workloads with the help of cloud-based technologies. The traditional methods of data warehousing need innovative and creative strategies in order to improve their efficiency. Thus, this research focuses on analyzing innovative methods which can improve the future of data warehousing, such as machine learning, encryption, artificial intelligence, etc. Moreover, the study also focuses on specific industries that require customized solutions to data warehousing. These include the manufacturing, finance, and healthcare industries. The study uses qualitative data gained through a comprehensive review of literature. The findings reveal a great level of significance of modern data warehousing techniques that assist in improving the overall efficiency of traditional methods
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online)
This work is licensed under a Creative Commons Attribution 4.0 International License.
©2024 All rights reserved by the respective authors and JKLST.