Machine Learning Models for Predicting Susceptibility to Infectious Diseases Based on Microbiome Profiles

Authors

  • Nasrullah Abbasi Washington University of Science and Technology Author https://orcid.org/0009-0009-5389-8030
  • Nizamullah FNU Washington University of Science and Technology, Alexandria, Virginia, USA Author
  • Shah Zeb Washington University of Science and Technology, Alexandria, Virginia, USA Author
  • Muhammad Fahad Washington University of Science and Technology, Alexandria, Virginia, USA Author
  • Muhammad Umer Qayyum Washington University of Science and Technology, Alexandria, Virginia, USA Author

DOI:

https://doi.org/10.60087/jklst.v3.n4.p35

Keywords:

Microbiome, Machine Learning , Disease Prediction , Infectious Diseases , Support Vector Machines , Personalized Medicine

Abstract

 

The human microbiome comprises complex ecosystems of microorganisms inhabiting different parts of the body and playing a very important role in sustaining healthiness and dictating disease vulnerability. Basing on this continuous generation of data on the microbiome, interest is developing in using them for disease risk prediction. Machine learning provides an extremely robust way of doing so, due to its nature in being able to handle complex and high-dimensional data. In this research article, authors have compared the efficiency of Random Forest, Support Vector Machines, and Neural Networks machine learning models in predicting infectious diseases using a microbiome profile. It provides a comprehensive overview of various studies that were published in the recent past using these machine learning techniques for microbiome data analysis. It further assesses the degree by which each model has captured the intrinsic complexities and variability of the microbiome that hold the key to the prediction of diseases with accuracy. Moreover, this review also underlined the importance of feature selection and data preprocessing in enhancing the performance of machine learning models. By selecting the most relevant features and properly preprocessing the data, one can train better models and hence make better predictions. Our results give a very good potential for machine learning models in predicting susceptibility to infectious diseases and, at the same time, show that there is indeed potential for further improvement. Multi-omics data integration should increase predictive power—incorporation of microbiome data with other kinds of biological information. Model interpretability can be important to enhancing clinicians' understanding and trust in the prediction, which is critical to the successful integration of these tools into truly personal healthcare.

Downloads

Download data is not yet available.

References

Abhyankar, M. M., Z, J., MA, Scully, K. W., Nafziger, A. J., Frisbee, A. L., Saleh, M. M., Madden, G. R., Hays, A. R., Poulter, M., & Petri, W. A. (2020). Immune Profiling To Predict Outcome of Clostridioides difficile Infection. mBio, 11(3). https://doi.org/10.1128/mbio.00905-20

Allegretti, J. R., Marcus, J., Storm, M., Sitko, J., Kennedy, K., Gerber, G. K., & Bry, L. (2019). Clinical Predictors of Recurrence After Primary Clostridioides difficile Infection: A Prospective Cohort Study. Digestive Diseases and Sciences, 65(6), 1761–1766. https://doi.org/10.1007/s10620-019-05900-3

Castaner, O., Goday, A., Park, Y., Lee, S., Magkos, F., Shiow, S. T. E., & Schröder, H. (2018). The Gut Microbiome Profile in Obesity: A Systematic review. International Journal of Endocrinology, 2018, 1–9. https://doi.org/10.1155/2018/4095789

Cho, Y., Lee, H. K., Kim, J., Yoo, K., Choi, J., Lee, Y., & Choi, M. (2024). Prediction of hospital-acquired influenza using machine learning algorithms: a comparative study. BMC Infectious Diseases, 24(1). https://doi.org/10.1186/s12879-024-09358-1

Demir, K. K., Cheng, M. P., & Lee, T. C. (2018). Predictive factors of Clostridioides difficile infection in hospitalized patients with new diarrhea: A retrospective cohort study. PLoS ONE, 13(12), e0207128. https://doi.org/10.1371/journal.pone.0207128

Fonseca, D. C., Da Rocha, I. M. G., Balmant, B. D., Callado, L., Prudêncio, A. P. A., Alves, J. T. M., Torrinhas, R. S., Da Rocha Fernandes, G., & Waitzberg, D. L. (2024). Evaluation of gut microbiota predictive potential associated with phenotypic characteristics to identify multifactorial diseases. Gut Microbes, 16(1). https://doi.org/10.1080/19490976.2023.2297815

Ghosh, S. (2020). Computational immunology. In CRC Press eBooks. https://doi.org/10.1201/9781351023504

Lee, S., & Lee, I. (2024). Comprehensive assessment of machine learning methods for diagnosing gastrointestinal diseases through whole metagenome sequencing data. Gut Microbes, 16(1). https://doi.org/10.1080/19490976.2024.2375679

Liu, Y., Fachrul, M., Inouye, M., & Méric, G. (2024). Harnessing human microbiomes for disease prediction. Trends in Microbiology, 32(7), 707–719. https://doi.org/10.1016/j.tim.2023.12.004

Manandhar, I., Alimadadi, A., Aryal, S., Munroe, P. B., Joe, B., & Cheng, X. (2021). Gut microbiome-based supervised machine learning for clinical diagnosis of inflammatory bowel diseases. AJP Gastrointestinal and Liver Physiology, 320(3), G328–G337. https://doi.org/10.1152/ajpgi.00360.2020

Midani, F. S., Weil, A. A., Chowdhury, F., Begum, Y. A., Khan, A. I., Debela, M. D., Durand, H. K., Reese, A. T., Nimmagadda, S. N., Silverman, J. D., Ellis, C. N., Ryan, E. T., Calderwood, S. B., Harris, J. B., Qadri, F., David, L. A., & LaRocque, R. C. (2018). Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection. The Journal of Infectious Diseases, 218(4), 645–653. https://doi.org/10.1093/infdis/jiy192

Peiffer-Smadja, N., Dellière, S., Rodriguez, C., Birgand, G., Lescure, F., Fourati, S., & Ruppé, E. (2020). Machine learning in the clinical microbiology laboratory: has the time come for routine practice? Clinical Microbiology and Infection, 26(10), 1300–1309. https://doi.org/10.1016/j.cmi.2020.02.006

Seo, J. Y., Hong, H., Ryu, W., Kim, D., Chun, J., & Kwak, M. (2023). Development and validation of a convolutional neural network model for diagnosing Helicobacter pylori infections with endoscopic images: a multicenter study. Gastrointestinal Endoscopy, 97(5), 880-888.e2. https://doi.org/10.1016/j.gie.2023.01.007

Su, Q., Liu, Q., Lau, R. I., Zhang, J., Xu, Z., Yeoh, Y. K., Leung, T. W. H., Tang, W., Zhang, L., Liang, J. Q. Y., Yau, Y. K., Zheng, J., Liu, C., Zhang, M., Cheung, C. P., Ching, J. Y. L., Tun, H. M., Yu, J., Chan, F. K. L., & Ng, S. C. (2022). Faecal microbiome-based machine learning for multi-class disease diagnosis. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-34405-3

Van Rossen, T. M., Van Dijk, L. J., Heymans, M. W., Dekkers, O. M., Vandenbroucke-Grauls, C. M. J. E., & Van Beurden, Y. H. (2021). External validation of two prediction tools for patients at risk for recurrentClostridioides difficileinfection. Therapeutic Advances in Gastroenterology, 14, 175628482097738. https://doi.org/10.1177/1756284820977385

Van Boven, M., Teirlinck, A. C., Meijer, A., Hooiveld, M., Van Dorp, C. H., Reeves, R. M., Campbell, H., Van Der Hoek, W., Reeves, R. M., Li, Y., Campbell, H., Nair, H., Van Wijhe, M., Fischer, T. K., Simonsen, L., Trebbien, R., Tong, S., Gallichan, S., Bangert, M., . . . Molero, E. (2020). Estimating transmission parameters for respiratory syncytial virus and predicting the impact of maternal and pediatric vaccination. The Journal of Infectious Diseases, 222(Supplement_7), S688–S694. https://doi.org/10.1093/infdis/jiaa424

Downloads

Published

25-08-2024

How to Cite

Abbasi, N., FNU, N. ., Shah Zeb, Muhammad Fahad, & Muhammad Umer Qayyum. (2024). Machine Learning Models for Predicting Susceptibility to Infectious Diseases Based on Microbiome Profiles. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 3(4), 35-47. https://doi.org/10.60087/jklst.v3.n4.p35