3D printing prostheses using additive manufacturing and regenerative engineering

Authors

  • Syeda Maria Hasany Independent Researcher, The City School, Punjab Author
  • Saloni Verma Department of Biomedical Engineering, Cornell University, New York Author
  • Karan Dhingra Department of Biomedical Engineering, University of Ottawa, Ontario Author

DOI:

https://doi.org/10.60087/jklst.v4.n1.005

Abstract

Additive manufacturing is a manufacturing process utilized to make prosthetics. It offers an affordable means to create custom-made prostheses. Yet, the number of studies exploring the domain of 3D printing and bioprinting of prosthetics remains limited. In this paper, we provide a comprehensive review of the current research in additive manufacturing to produce prosthetic limbs, bionic eyes, temporomandibular joints (TMJ), cardiac valves, and skin. We concluded that the research gap lies in the long-term, periodic assessment of 3D-printed prosthetic limbs for durability. 3D-printed prosthetic sockets’ reinforcement materials are a particularly underexplored topic and the main shortcoming of 3D-printed prostheses is their failure under shear stresses. In bioprinting, research must focus on developing tissue-specific bioinks and hydrogels to overcome their existing scarcity. Bioprinting techniques like extrusion, inkjet, and laser-assisted bioprinting subject bioinks to conditions of high temperature and pressure. Bioinks must withstand the printing process and simultaneously retain their rheological properties and cell viability. Moreover, some bioprinting techniques are still quite expensive. However, 3D printing and bioprinting offer the prospect of customization to the patient’s unique anatomy, increasing the wear time of prostheses and offering unique benefits like improved tissue regeneration and adaptability to changing patient anatomy. 3D printing specifically reduces costs, and production time and improves accessibility in war-stricken areas with more amputees. 

Downloads

Download data is not yet available.

References

Yuan, B.; Dong, H.; Gu, S.; Xiao, S.; Song, F. The Global Burden of Traumatic Amputation in 204 Countries and Territories. Frontiers in Public Health 2023, 11. https://doi.org/10.3389/fpubh.2023.1258853.

Rivera, J. A.; Churovich, K.; Anderson, A. B.; Potter, B. K. Estimating Recent US Limb Loss Prevalence and Updating Future Projections. Archives of Rehabilitation Research and Clinical Translation 2024, 100376. https://doi.org/10.1016/j.arrct.2024.100376.

Pundlik, A.; Verma, S.; Dhingra, K. Neural Pathways Involved in Emotional Regulation and Emotional Intelligence. J. Knowl. Learn. Sci. Technol. 2024, 3 (3), 165-192. https://doi.org/10.60087/jklst.vol3.n3.p.165-192.

Lee, C.; Engdahl, S.; Riegger, A.; Davis, A.; Kelly, B. M.; Gates, D. H. Employment Status in Individuals with Upper-Limb Amputation. JPO Journal of Prosthetics and Orthotics 2021, Publish Ahead of Print. https://doi.org/10.1097/jpo.0000000000000366.

Raichle, K. A. Prosthesis Use in Persons with Lower- and Upper-Limb Amputation. The Journal of Rehabilitation Research and Development 2008, 45 (7), 961–972. https://doi.org/10.1682/jrrd.2007.09.0151.

Kulkarni S, Dhingra K, Verma S., "Applications of CMUT Technology in Medical Diagnostics: From Photoacoustic to Ultrasonic Imaging", International Journal of Science and Research (IJSR), Volume 13 Issue 6, June 2024, pp. 1264-1269, https://www.ijsr.net/ar-chive/v13i6/SR24619062609.pdf.

Wyss, D.; Lindsay, S.; Cleghorn, W. L.; Andrysek, J. Priorities in Lower Limb Prosthetic Service Delivery Based on an International Survey of Prosthetists in Low- and High-Income Countries. Prosthetics and Orthotics International 2013, 39 (2), 102–111. https://doi.org/10.1177/0309364613513824.

Sreenivasan, N.; Ulloa Gutierrez, D. F.; Bifulco, P.; Cesarelli, M.; Gunawardana, U.; Gargiulo, G. D. Towards Ultra Low-Cost Myoactivated Prostheses. BioMed Research International 2018, 2018, 1–14. https://doi.org/10.1155/2018/9634184.

Marino, M.; Pattni, S.; Greenberg, M.; Miller, A.; Hocker, E.; Ritter, S.; Mehta, K. Access to prosthetic devices in developing countries: Pathways and challenges. IEEE Xplore. https://doi.org/10.1109/GHTC.2015.7343953.

Wong, W. L.; Su, X.; Li, X.; Cheung, C. M. G.; Klein, R.; Cheng, C.-Y.; Wong, T. Y. Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. The Lancet Global Health 2014, 2 (2), e106–e116. https://doi.org/10.1016/s2214-109x(13)70145-1.

Merabet, L. B. Building the Bionic Eye: An Emerging Reality and Opportunity. Progress in Brain Research 2011, 192, 3–15. https://doi.org/10.1016/b978-0-444-53355-5.00001-4.

Suvvari, T.; Madhu, M.; Nagendra, S. Bionic Eye: An Iconic Innovation. TNOA Journal of Ophthalmic Science and Research 2021, 59 (1), 52. https://doi.org/10.4103/tjosr.tjosr_168_20.

Goshe, M. T.; Kassegne, S. K. 3D Printing: Cost-Effective Solution for Increased Access to Prosthesis of Lower Extremity. https://doi.org/10.13140/RG.2.2.31137.28001.

Wang, S.; Li, T.; Liu, T.; Xu, Y.; Liu, Z.; Chen, Y.; Weng, Z.; Wang, Z. Fabrication of Bionic Compound Eye Lens by 3D Printing and UV Mask Curing. 2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) 2022, 439–442. https://doi.org/10.1109/3m-nano56083.2022.9941590.

Srija Vennam; Vijayasankar KN; Pati, F. 3D Printed Personalized Assistive Devices: A Material, Technique, and Medical Condition Perspective. Applied Materials Today 2024, 40, 102403–102403. https://doi.org/10.1016/j.apmt.2024.102403.

Biddiss, E. A.; Chau, T. T. Upper Limb Prosthesis Use and Abandonment: A Survey of the Last 25 Years. Prosthetics and Orthotics International 2007, 31 (3), 236–257. https://doi.org/10.1080/03093640600994581.

Davidson, J. A Survey of the Satisfaction of Upper Limb Amputees with Their Prostheses, Their Lifestyles, and Their Abilities. Journal of Hand Therapy 2002, 15 (1), 62–70. https://doi.org/10.1053/hanthe.2002.v15.01562.

S. Odinotski et al., “A Conductive Hydrogel‐Based Microneedle Platform for Real‐Time pH Measurement in Live Animals,” Small, vol. 18, no. 45, Sep. 2022, doi: https://doi.org/10.1002/smll.202200201.

Raina, D.; Dawange, A.; Bandha, T.; Kaur, A.; Wasekar, R.; Verma, K.; Verma, S.; Dhingra, K. Convoluted Neural Network and Transfer Learning Algorithm for Improved Brain Tumor Classifications in MRI. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 200-212. https://doi.org/10.60087/jklst.v3.n4.p200.

Tsui, J. K. S.; Bell, S.; Cruz, L. da; Dick, A. D.; Sagoo, M. S. Applications of Three-Dimensional Printing in Ophthalmology. Survey of Ophthalmology 2022, 67 (4), 1287–1310. https://doi.org/10.1016/j.survophthal.2022.01.004.

Baarah, B.; Shatnawi, R.; Khatatbeh, A. Causes of Permanent Severe Visual Impairment and Blindness among Jordanian Population. Middle East African Journal of Ophthalmology 2018, 25 (1), 25. https://doi.org/10.4103/meajo.meajo_202_16.

Suthar, A.; Suthar, T. The Bionic Eye…a New Vision of the Future. International Journal of Science and Research (IJSR) ResearchGate Impact Factor 2018. https://doi.org/10.21275/SR20607185604.

George, D. A. S.; George, A. S. H.; Shahul, A. Insightful Innovation: Exploring the Efficacy of Bionic Eyes in Restoring Vision Impairment. Partners Universal International Innovation Journal 2023, 1 (3), 276–291. https://doi.org/10.5281/zenodo.8085602.

Wang, Y.; Shi, C.; Xu, H.; Zhang, Y.; Yu, W. A Compact Bionic Compound Eye Camera for Imaging in a Large Field of View. Optics & Laser Technology 2021, 135, 106705. https://doi.org/10.1016/j.optlastec.2020.106705.

Guttridge, C.; Shannon, A.; O’Sullivan, A.; O’Sullivan, K. J.; O’Sullivan, L. W. Biocompatible 3D Printing Resins for Medical Applications: A Review of Marketed Intended Use, Biocompatibility Certification, and Post-Processing Guidance. Annals of 3D Printed Medicine 2022, 5, 100044. https://doi.org/10.1016/j.stlm.2021.100044.

Kabashima, K.; Honda, T.; Ginhoux, F.; Egawa, G. The Immunological Anatomy of the Skin. Nature Reviews Immunology 2018, 19 (1), 19–30. https://doi.org/10.1038/s41577-018-0084-5.

Walker, M. Human Skin through the Ages. International Journal of Pharmaceutics 2022, 622, 121850. https://doi.org/10.1016/j.ijpharm.2022.121850.

Weng, T.; Zhang, W.; Xia, Y.; Wu, P.; Yang, M.; Jin, R.; Xia, S.; Wang, J.; You, C.; Han, C.; Wang, X. 3D Bioprinting for Skin Tissue Engineering: Current Status and Perspectives. Journal of Tissue Engineering 2021, 12, 204173142110285. https://doi.org/10.1177/20417314211028574.

Sörgel, C. A.; Cai, A.; Schmid, R.; Horch, R. E. Perspectives on the Current State of Bioprinted Skin Substitutes for Wound Healing. Biomedicines 2023, 11 (10), 2678–2678. https://doi.org/10.3390/biomedicines11102678.

Teng, F.; Wang, W.; Wang, Z.-Q.; Wang, G.-X. Analysis of Bioprinting Strategies for Skin Diseases and Injuries through Structural and Temporal Dynamics: Historical Perspectives, Research Hotspots, and Emerging Trends. Biofabrication 2024, 16 (2). https://doi.org/10.1088/1758-5090/ad28f0.

H. J. Pandya et al., “A microfluidic platform for drug screening in a 3D cancer microenvironment,” Biosensors and Bioelectronics, vol. 94, pp. 632–642, Aug. 2017, doi: https://doi.org/10.1016/j.bios.2017.03.054.

M. Safavieh et al., “Paper microchip with a graphene-modified silver nano-composite electrode for electrical sensing of microbial pathogens,” Nanoscale, vol. 9, no. 5, pp. 1852–1861, 2017, doi: https://doi.org/10.1039/c6nr06417e.

GhavamiNejad P, GhavamiNejad A, Zheng H, Dhingra K, Samarikhalaj M, Poudineh M., “A Conductive Hydrogel Microneedle‐Based Assay Integrating PEDOT:PSS and Ag‐Pt Nanoparticles for Real‐Time, Enzyme‐Less, and Electro-chemical Sensing of Glucose,” Advanced Healthcare Materials, vol. 12, no. 1, Oct. 2022, doi: https://doi.org/10.1002/adhm.202202362.

Waseeq Ur Rehman; Asim, M.; Hussain, S.; Khan, S. A.; Khan, S. B. Hydrogel: A Promising Material in Pharmaceutics. Current Pharmaceutical Design 2020, 26. https://doi.org/10.2174/1381612826666201118095523.

Barcena, A. J. R.; Dhal, K.; Patel, P.; Ravi, P.; Kundu, S.; Tappa, K. Current Biomedical Applications of 3D-Printed Hydrogels. Gels 2024, 10 (1), 8. https://doi.org/10.3390/gels10010008.

H. J. Pandya et al., “Label-free electrical sensing of bacteria in eye wash samples: A step towards point-of-care detection of pathogens in patients with infectious keratitis,” Biosensors and Bioelectronics, vol. 91, pp. 32–39, May 2017, doi: https://doi.org/10.1016/j.bios.2016.12.035.

Barreiro Carpio, M.; Dabaghi, M.; Ungureanu, J.; Kolb, M. R.; Hirota, J. A.; Moran-Mirabal, J. M. 3D Bioprinting Strategies, Challenges, and Opportunities to Model the Lung Tissue Microenvironment and Its Function. Frontiers in Bioengineering and Biotechnology 2021, 9. https://doi.org/10.3389/fbioe.2021.773511.

Deptuła, M.; Zawrzykraj, M.; Sawicka, J.; Banach-Kopeć, A.; Tylingo, R.; Pikuła, M. Application of 3D- Printed Hydrogels in Wound Healing and Regenerative Medicine. Biomedicine & Pharmacotherapy 2023, 167, 115416. https://doi.org/10.1016/j.biopha.2023.115416.

Manita, P. G.; Garcia-Orue, I.; Santos-Vizcaino, E.; Hernandez, R. M.; Igartua, M. 3D Bioprinting of Functional Skin Substitutes: From Current Achievements to Future Goals. Pharmaceuticals 2021, 14 (4), 362. https://doi.org/10.3390/ph14040362.

Persaud, A.; Maus, A.; Strait, L.; Zhu, D. 3D Bioprinting with Live Cells. Engineered Regeneration 2022, 3 (3), 292–309. https://doi.org/10.1016/j.engreg.2022.07.002.

Sun, Z.; Zhao, J.; Leung, E.; Flandes-Iparraguirre, M.; Vernon, M.; Silberstein, J.; De-Juan-Pardo, E. M.; Jansen, S. Three-Dimensional Bioprinting in Cardiovascular Disease: Current Status and Future Directions. Biomolecules 2023, 13 (8), 1180. https://doi.org/10.3390/biom13081180.

Gourlay, T.; M. Rozeik. Improving the Hemocompatibility of Heart Valves. Elsevier eBooks 2017, 395–429. https://doi.org/10.1016/b978-0-08-100497-5.00012-4.

Kellar, R. S.; Lancaster, J. J.; Goldman, S.; McAllister, T. N.; L’Heureux, N. Cardiovascular Tissue Engineering. 2011. https://doi.org/10.1016/b978-0-08-055294-1.00177-x.

Bhandari, S.; Yadav, V.; Ishaq, A.; Sailakshmn Sanipini; Chukwuyem Ekhator; Rafeef Khleif; Alee Beheshtaein; Jhajj, L. K.; Aimen Waqar Khan; Khalifa, A. A.; Muhammad Arsal Naseem; Bellegarde, S. B.; Muhammad Ather Nadeem. Trends and Challenges in the Development of 3D-Printed Heart Valves and Other Cardiac Implants: A Review of Current Advances. Cureus 2023. https://doi.org/10.7759/cureus.43204.

Sell, S. A.; Wolfe, P. S.; Garg, K.; McCool, J. M.; Rodriguez, I. A.; Bowlin, G. L. The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues. Polymers 2010, 2 (4), 522–553. https://doi.org/10.3390/polym2040522.

Bhandari, S.; Yadav, V.; Ishaq, A.; Sailakshmn Sanipini; Chukwuyem Ekhator; Rafeef Khleif; Alee Beheshtaein; Jhajj, L. K.; Aimen Waqar Khan; Khalifa, A. A.; Muhammad Arsal Naseem; Bellegarde, S. B.; Muhammad Ather Nadeem. Trends and Challenges in the Development of 3D-Printed Heart Valves and Other Cardiac Implants: A Review of Current Advances. Cureus 2023. https://doi.org/10.7759/cureus.43204.

Duan, B.; Hockaday, L. A.; Kang, K. H.; Butcher, J. T. 3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels. Journal of Biomedical Materials Research Part A 2012, 101A (5), 1255–1264. https://doi.org/10.1002/jbm.a.34420.

Gupte, P.; Dhingra, K.; Saloni , V. Precision Gene Editing Strategies With CRISPR-Cas9 for Advancing Cancer Immunotherapy and Alzheimer’s Disease. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 11-21. https://doi.org/10.60087/jklst.v3.n4.p11.

Maxson, E. L.; Young, M. D.; Noble, C.; Go, J. L.; Heidari, B.; Khorramirouz, R.; Morse, D. W.; Lerman, A. In Vivo Remodeling of a 3D-Bioprinted Tissue Engineered Heart Valve Scaffold. Bioprinting 2019, 16, e00059. https://doi.org/10.1016/j.bprint.2019.e00059.

Vashistha, R.; Kumar, P.; Dangi, A. K.; Sharma, N.; Chhabra, D.; Shukla, P. Quest for Cardiovascular Interventions: Precise Modeling and 3D Printing of Heart Valves. Journal of Biological Engineering 2019, 13 (1). https://doi.org/10.1186/s13036-018-0132-5.

Piva, H. L.; Leite, V. O.; Tedesco, A. C. 3D Printed Collagen Scaffold for Heart Valve Repair. Annals of 3D Printed Medicine 2024, 16, 100181. https://doi.org/10.1016/j.stlm.2024.100181.

Alonzo, M.; AnilKumar, S.; Roman, B.; Tasnim, N.; Joddar, B. 3D Bioprinting of Cardiac Tissue and Cardiac Stem Cell Therapy. Translational Research 2019, 211, 64–83. https://doi.org/10.1016/j.trsl.2019.04.004.

Barreiro Carpio, M.; Dabaghi, M.; Ungureanu, J.; Kolb, M. R.; Hirota, J. A.; Moran-Mirabal, J. M. 3D Bioprinting Strategies, Challenges, and Opportunities to Model the Lung Tissue Microenvironment and Its Function. Frontiers in Bioengineering and Biotechnology 2021, 9. https://doi.org/10.3389/fbioe.2021.773511.

Jana, S.; Lerman, A. Bioprinting a Cardiac Valve. Biotechnology Advances 2015, 33 (8), 1503–1521. https://doi.org/10.1016/j.biotechadv.2015.07.006.

Tripathi, S.; Mandal, S. S.; Bauri, S.; Maiti, P. 3D Bioprinting and Its Innovative Approach for Biomedical Applications. MedComm 2022, 4 (1). https://doi.org/10.1002/mco2.194.

Tripathi, S.; Verma, S.; Dhingra, K. Microfluidics and Personalized Medicine towards Diagnostic Precision and Treatment Efficacy. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 213-223. https://doi.org/10.60087/jklst.v3.n4.p213.

Sharma, A.; Verma, S.; Dhingra, K. Microneedles-Mediated Transdermal Drug Delivery Techniques in Modern Medicine. J. Knowl. Learn. Sci. Technol. 2024, 4 (1), 20-31. https://doi.org/10.60087/jklst.v4.n1.003.

Boularaoui, S.; Al Hussein, G.; Khan, K. A.; Christoforou, N.; Stefanini, C. An Overview of Extrusion-Based Bioprinting with a Focus on Induced Shear Stress and Its Effect on Cell Viability. Bioprinting 2020, 20, e00093. https://doi.org/10.1016/j.bprint.2020.e00093.

Brunel, L. G.; Hull, S. M.; Heilshorn, S. C. Engineered Assistive Materials for 3D Bioprinting: Support Baths and Sacrificial Inks. Biofabrication 2022, 14 (3). https://doi.org/10.1088/1758-5090/ac6bbe.

Park, J. A.; Lee, Y.; Jung, S. Inkjet-Based Bioprinting for Tissue Engineering. Organoid 2023, 3, e12–e12. https://doi.org/10.51335/organoid.2023.3.e12.

Li, X.; Chen, J.; Liu, B.; Wang, X.; Ren, D.; Xu, T. Inkjet Printing for Biofabrication. 3D Printing and Biofabrication 2018, 283–301. https://doi.org/10.1007/978-3-319-45444-3_26.

Chowdhury, S. R.; Yogeswaran Lokanathan; Xian, L. J.; Fauzi Mh Busra; Hoque, M. E. 3D Printed Bioscaffolds for Developing Tissue-Engineered Constructs. https://doi.org/10.5772/intechopen.92418.

Kumar, P.; Ebbens, S.; Zhao, X. Inkjet Printing of Mammalian Cells – Theory and Applications. Bioprinting 2021, 23, e00157. https://doi.org/10.1016/j.bprint.2021.e00157.

Rider, P.; Kačarević, Ž. P.; Alkildani, S.; Retnasingh, S.; Barbeck, M. Bioprinting of Tissue Engineering Scaffolds. Journal of Tissue Engineering 2018, 9, 204173141880209. https://doi.org/10.1177/2041731418802090.

Ng, W. L.; Lee, J. M.; Yeong, W. Y.; Win Naing, M. Microvalve-Based Bioprinting – Process, Bio-Inks and Applications. Biomaterials Science 2017, 5 (4), 632–647. https://doi.org/10.1039/c6bm00861e.

Keriquel, V.; Oliveira, H.; Rémy, M.; Ziane, S.; Delmond, S.; Rousseau, B.; Rey, S.; Catros, S.; Amédée, J.; Guillemot, F.; Fricain, J.-C. In Situ Printing of Mesenchymal Stromal Cells, by Laser-Assisted Bioprinting, for in Vivo Bone Regeneration Applications. Scientific Reports 2017, 7 (1), 1–10. https://doi.org/10.1038/s41598-017-01914-x.

Ventura, R. D. An Overview of Laser-Assisted Bioprinting (LAB) in Tissue Engineering Applications. Medical Lasers 2021, 10 (2), 76–81. https://doi.org/10.25289/ml.2021.10.2.76.

Jamee, R.; Araf, Y.; Naser, I. B.; Promon, S. K. The Promising Rise of Bioprinting in Revolutionalizing Medical Science: Advances and Possibilities. Regenerative Therapy 2021, 18, 133–145. https://doi.org/10.1016/j.reth.2021.05.006.

Xie, Z.; Gao, M.; Lobo, A. O.; Webster, T. J. 3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid. Polymers 2020, 12 (8), 1717. https://doi.org/10.3390/polym12081717.

Riggs, B. C.; Dias, A. D.; Schiele, N. R.; Cristescu, R.; Huang, Y.; Corr, D. T.; Chrisey, D. B. Matrix-Assisted Pulsed Laser Methods for Biofabrication. MRS Bulletin 2011, 36 (12), 1043–1050. https://doi.org/10.1557/mrs.2011.276.

Gillispie, G.; Prim, P.; Copus, J.; Fisher, J.; Mikos, A. G.; Yoo, J. J.; Atala, A.; Lee, S. J. Assessment Methodologies for Extrusion-Based Bioink Printability. Biofabrication 2020, 12 (2), 022003. https://doi.org/10.1088/1758-5090/ab6f0d.

Olejnik, A.; Semba, J. A.; Kulpa, A.; Dańczak-Pazdrowska, A.; Rybka, J. D.; Gornowicz-Porowska, J. 3D Bioprinting in Skin Related Research: Recent Achievements and Application Perspectives. ACS Synthetic Biology 2021, 11 (1), 26–38. https://doi.org/10.1021/acssynbio.1c00547.

Helland, M. M. Anatomy and Function of the Temporomandibular Joint. The Journal of orthopaedic and sports physical therapy 1980, 1 (3), 145–152. https://doi.org/10.2519/jospt.1980.1.3.145.

Alomar, X.; Medrano, J.; Cabratosa, J.; Clavero, J. A.; Lorente, M.; Serra, I.; Monill, J. M.; Salvador, A. Anatomy of the Temporomandibular Joint. Seminars in ultrasound, CT, and MR 2007, 28 (3), 170–183. https://doi.org/10.1053/j.sult.2007.02.002.

Pascal-André Vendittoli; Riviere, C.; Hirschmann, M. T.; Bini, S. Why Personalized Surgery Is the Future of Hip and Knee Arthroplasty: A Statement from the Personalized Arthroplasty Society. EFORT open reviews 2023, 8 (12), 874–882. https://doi.org/10.1530/eor-22-0096.

Ramos, A. M.; Mesnard, M. The Stock Alloplastic Temporomandibular Joint Implant Can Influence the Behavior of the Opposite Native Joint: A Numerical Study. Journal of Cranio-Maxillofacial Surgery 2015, 43 (8), 1384–1391. https://doi.org/10.1016/j.jcms.2015.06.042.

Huang, H.-L.; Su, K.-C.; Fuh, L.-J.; Chen, M. Y. C.; Wu, J.; Tsai, M.-T.; Hsu, J.-T. Biomechanical Analysis of a Temporomandibular Joint Condylar Prosthesis during Various Clenching Tasks. Journal of Cranio-Maxillofacial Surgery 2015, 43 (7), 1194–1201. https://doi.org/10.1016/j.jcms.2015.04.016.

Ackland, D. C.; Robinson, D.; Redhead, M.; Lee, P. V. S.; Moskaljuk, A.; Dimitroulis, G. A Personalized 3D-Printed Prosthetic Joint Replacement for the Human Temporomandibular Joint: From Implant Design to Implantation. Journal of the Mechanical Behavior of Biomedical Materials 2017, 69, 404–411. https://doi.org/10.1016/j.jmbbm.2017.01.048.

Wu, Y.; Liu, J.; Kang, L.; Tian, J.; Zhang, X.; Hu, J.; Huang, Y.; Liu, F.; Wang, H.; Wu, Z. An Overview of 3D Printed Metal Implants in Orthopedic Applications: Present and Future Perspectives. Heliyon 2023, 9 (7), e17718–e17718. https://doi.org/10.1016/j.heliyon.2023.e17718.

Jiang, J.; Jiao, Z.; Cheng, B.; Han, J.; Xu, X.; Guo, C. Design, Fabrication and Evaluation of a Novel 3D-Printed Temporomandibular Joint Prosthesis Enhanced with Elastic Layers. International Journal of Bioprinting 2024, 0 (0), 4899. https://doi.org/10.36922/ijb.4899.

Kazuo Tanne; Tanaka, E.; Sakuda, M. Stress Distribution in the Temporomandibular Joint Produced by Orthopedic Chincup Forces Applied in Varying Directions: A Three-Dimensional Analytic Approach with the Finite Element Method. American Journal of Orthodontics and Dentofacial Orthopedics 1996, 110 (5), 502–507. https://doi.org/10.1016/s0889-5406(96)70056-2.

Tanaka, E.; Sasaki, A.; K Tahmina; Yamaguchi, K.; K Tanne. Mechanical Properties of Human Articular Disk and Its Influence on TMJ Loading Studied with Finite Element Method. Journal of Oral Rehabilitation 2001, 28 (3), 273–279. https://doi.org/10.1111/j.1365-2842.2001.tb01677.x.

Capsi-Morales, P.; Piazza, C.; Sjoberg, L.; Catalano, M. G.; Grioli, G.; Bicchi, A.; Hermansson, L. M. Functional Assessment of Current Upper Limb Prostheses: An Integrated Clinical and Technological Perspective. PLOS ONE 2023, 18 (8), e0289978. https://doi.org/10.1371/journal.pone.0289978.

Yildiz, K. A.; Shin, A. Y.; Kaufman, K. R. Interfaces with the Peripheral Nervous System for the Control of a Neuroprosthetic Limb: A Review. Journal of NeuroEngineering and Rehabilitation 2020, 17 (1). https://doi.org/10.1186/s12984-020-00667-5.

Kumar, D. K.; Jelfs, B.; Sui, X.; Arjunan, S. P. Prosthetic Hand Control: A Multidisciplinary Review to Identify Strengths, Shortcomings, and the Future. Biomedical Signal Processing and Control 2019, 53, 101588. https://doi.org/10.1016/j.bspc.2019.101588.

Miller, L. A.; Stubblefield, K. A.; Lipschutz, R. D.; Lock, B. A.; Kuiken, T. A. Improved Myoelectric Prosthesis Control Using Targeted Reinnervation Surgery: A Case Series. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2008, 16 (1), 46–50. https://doi.org/10.1109/tnsre.2007.911817.

Chilmakuri, L.; Mishra, A. K.; Shokeen, D. .; Gupta, P. .; Wadhwa, H. H.; Dhingra, K. .; Verma, S. A Wearable EMG Sensor for Continuous Wrist Neuromuscular Activity for Monitoring. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 148-159. https://doi.org/10.60087/jklst.v3.n4.p148.

Dongre, A. .; Nale, T. . .; Ramavajhala, A.; Mahanta, D. .; Sharma, . O. .; Wadhwa, H. H. .; Dhingra, K. .; Verma, S. . The Evolution of Transdermal Drug Delivery: From Patches to Smart Microneedle-Biosensor Systems. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 160-168. https://doi.org/10.60087/jklst.vol3.n4.p160.

Frost, C. M.; Ursu, D. C.; Flattery, S. M.; Nedic, A.; Hassett, C. A.; Moon, J. D.; Buchanan, P. J.; Brent Gillespie, R.; Kung, T. A.; Kemp, S. W. P.; Cederna, P. S.; Urbanchek, M. G. Regenerative Peripheral Nerve Interfaces for Real-Time, Proportional Control of a Neuroprosthetic Hand. Journal of NeuroEngineering and Rehabilitation 2018, 15 (1). https://doi.org/10.1186/s12984-018-0452-1.

Vu, P. P.; Vaskov, A. K.; Irwin, Z. T.; Henning, P. T.; Lueders, D. R.; Laidlaw, A. T.; Davis, A. J.; Nu, C. S.; Gates, D. H.; Gillespie, R. B.; Kemp, S. W. P.; Kung, T. A.; Chestek, C. A.; Cederna, P. S. A Regenerative Peripheral Nerve Interface Allows Real-Time Control of an Artificial Hand in Upper Limb Amputees. Science Translational Medicine 2020, 12 (533). https://doi.org/10.1126/scitranslmed.aay2857.

Periketi, P.; Kaur, K. .; Naseer Vaid, F. .; Sree M, Y. .; Madhu, M. .; Verma, S. .; Dhingra, K. . Blood Brain Barrier-on-a-Chip Permeation to Model Neurological Diseases Using Microfluidic Biosensors. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 78-93. https://doi.org/10.60087/jklst.v3.n4.p78.

Green, R. A.; Lim, K. S.; Henderson, W. C.; Hassarati, R. T.; Martens, P. J.; Lovell, N. H.; Poole-Warren, L. A. Living Electrodes: Tissue Engineering the Neural Interface. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2013. https://doi.org/10.1109/embc.2013.6611158.

Wei, Y.; Li, B.; Domingos, M.; Qian, Z.; Zhu, Y.; Yan, L.; Ren, L.; Wei, G. Fully 3D Printed Flexible, Conformal and Multi-Directional Tactile Sensor with Integrated Biomimetic and Auxetic Structure. Communications Engineering 2023, 2 (1). https://doi.org/10.1038/s44172-023-00131-x.

Mutlu, R.; Singh, D.; Charbel Tawk; Emre Sarıyıldız. A 3D-Printed Soft Haptic Device with Built-in Force Sensing Delivering Bio-Mimicked Feedback. Biomimetics 2023, 8 (1), 127–127. https://doi.org/10.3390/biomimetics8010127.

Moeinnia, H.; Su, H.; Kim, W. S. Novel Grasping Mechanisms of 3D‐Printed Prosthetic Hands. Advanced Intelligent Systems 2022, 4 (11), 2200189. https://doi.org/10.1002/aisy.202200189.

Nagarajan, Y. R.; Farukh Farukh; Buis, A.; Karthikeyan Kandan. Single Polymer Composites: An Innovative Solution for Lower Limb Prosthetic Sockets. Prosthesis 2024, 6 (3), 457–477. https://doi.org/10.3390/prosthesis6030033.

Noshin Tasnim Tuli; Khatun, S.; Adib Bin Rashid. Unlocking the Future of Precision Manufacturing: A Comprehensive Exploration of 3D Printing with Fiber-Reinforced Composites in Aerospace, Automotive, Medical, and Consumer Industries. Heliyon 2024, e27328–e27328. https://doi.org/10.1016/j.heliyon.2024.e27328.

Kazim, I.; Gande, T.; Reyher, E. .; Gyatsho Bhutia, K. .; Dhingra, K.; Verma, S. Advancements in Sequencing technologies:: From Genomic Revolution to Single-Cell Insights in Precision Medicine. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 108-124. https://doi.org/10.60087/jklst.v3.n4.p108.

Griffet, J. Amputation and Prosthesis Fitting in Paediatric Patients. Orthopaedics & Traumatology: Surgery & Research 2016, 102 (1), S161–S175. https://doi.org/10.1016/j.otsr.2015.03.020.

Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T. Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Composites Part B: Engineering 2018, 143 (1359-8368), 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012.

Owen, M. K.; DesJardins, J. D. Transtibial Prosthetic Socket Strength. Journal of Prosthetics and Orthotics 2020, 32 (2), 93–100. https://doi.org/10.1097/jpo.0000000000000306.

Allum, J.; Gleadall, A.; Silberschmidt, V. V. Fracture of 3D-Printed Polymers: Crucial Role of Filament-Scale Geometric Features. Engineering Fracture Mechanics 2020, 224, 106818. https://doi.org/10.1016/j.engfracmech.2019.106818.

Ramlee, M. H.; Ammarullah, M. I.; Mohd Sukri, N. S.; Faidzul Hassan, N. S.; Baharuddin, M. H.; Abdul Kadir, M. R. Investigation on Three-Dimensional Printed Prosthetics Leg Sockets Coated with Different Reinforcement Materials: Analysis on Mechanical Strength and Microstructural. Scientific Reports 2024, 14 (1), 6842. https://doi.org/10.1038/s41598-024-57454-8.

Dey, A.; Roan Eagle, I. N.; Yodo, N. A Review on Filament Materials for Fused Filament Fabrication. Journal of Manufacturing and Materials Processing 2021, 5 (3), 69. https://doi.org/10.3390/jmmp5030069.

Rodzeń, K.; Harkin-Jones, E.; Wegrzyn, M.; Sharma, P. K.; Zhigunov, A. Improvement of the Layer-Layer Adhesion in FFF 3D Printed PEEK/Carbon Fibre Composites. Composites Part A: Applied Science and Manufacturing 2021, 149, 106532. https://doi.org/10.1016/j.compositesa.2021.106532.

Tripathi, S.; Dash, M.; Chakraborty, R.; Lukman, H. J.; Kumar, P.; Hassan, S.; Mehboob, H.; Singh, H.; Nanda, H. S. Engineering Considerations in the Design of Tissue Specific Bioink for 3D Bioprinting Applications. Biomaterials Science 2024. https://doi.org/10.1039/d4bm01192a.

Augustine, R.; Alhussain, H.; Zahid, A. A.; Raza Ur Rehman, S.; Ahmed, R.; Hasan, A. Crosslinking Strategies to Develop Hydrogels for Biomedical Applications. Gels Horizons: From Science to Smart Materials 2021, 21–57. https://doi.org/10.1007/978-981-15-7138-1_2.

Mancha Sánchez, E.; Gómez-Blanco, J. C.; López Nieto, E.; Casado, J. G.; Macías-García, A.; Díaz Díez, M. A.; Carrasco-Amador, J. P.; Torrejón Martín, D.; Sánchez-Margallo, F. M.; Pagador, J. B. Hydrogels for Bioprinting: A Systematic Review of Hydrogels Synthesis, Bioprinting Parameters, and Bioprinted Structures Behavior. Frontiers in Bioengineering and Biotechnology 2020, 8, 776. https://doi.org/10.3389/fbioe.2020.00776.

Theus, A. S.; Ning, L.; Hwang, B.; Gil, C.; Chen, S.; Wombwell, A.; Mehta, R.; Serpooshan, V. Bioprintability: Physiomechanical and Biological Requirements of Materials for 3D Bioprinting Processes. Polymers 2020, 12 (10), 2262. https://doi.org/10.3390/polym12102262.

Hwang, J.-H.; Byun, M. R.; Kim, A. R.; Kim, K. M.; Cho, H. J.; Lee, Y. H.; Kim, J.; Jeong, M. G.; Hwang, E. S.; Hong, J.-H. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation. PLOS ONE 2015, 10 (8), e0135519. https://doi.org/10.1371/journal.pone.0135519.

Walma, D. A. C.; Yamada, K. M. The Extracellular Matrix in Development. Development 2020, 147 (10), dev175596. https://doi.org/10.1242/dev.175596.

Diller, R. B.; Tabor, A. J. The Role of the Extracellular Matrix (ECM) in Wound Healing: A Review. Biomimetics 2022, 7 (3), 87. https://doi.org/10.3390/biomimetics7030087.

Barceló, X.; Eichholz, K. F.; Garcia, O.; Kelly, D. J. Tuning the Degradation Rate of Alginate-Based Bioinks for Bioprinting Functional Cartilage Tissue. Biomedicines 2022, 10 (7), 1621. https://doi.org/10.3390/biomedicines10071621.

Hou, Y.; Cui, X.; Qin, Z.; Su, C.; Zhang, G.; Tang, J.; Li, J.; Zhang, J. Three-Dimensional Bioprinting of Artificial Blood Vessel: Process, Bioinks, and Challenges. International Journal of bioprinting 2023, 9 (4). https://doi.org/10.18063/ijb.740.

Bosmans, C.; Núria Ginés Rodriguez; Karperien, M.; Malda, J.; Liliana Moreira Teixeira; Levato, R.; Jeroen Leijten. Towards Single-Cell Bioprinting: Micropatterning Tools for Organ-On-Chip Development. Trends in Biotechnology 2024. https://doi.org/10.1016/j.tibtech.2023.11.014.

Zhang, P.; Abate, A. R. High‐Definition Single‐Cell Printing: Cell‐By‐Cell Fabrication of Biological Structures. Advanced Materials 2020, 32 (52), 2005346. https://doi.org/10.1002/adma.202005346.

Xu, H.-Q.; Liu, J.-C.; Zhang, Z.-Y.; Xu, C.-X. A Review on Cell Damage, Viability, and Functionality during 3D Bioprinting. Military Medical Research 2022, 9 (1). https://doi.org/10.1186/s40779-022-00429-5.

Li, Y.; Ma, Z.; Ren, Y.; Lu, D.; Li, T.; Li, W.; Wang, J.; Ma, H.; Zhao, J. Tissue Engineering Strategies for Peripheral Nerve Regeneration. Frontiers in Neurology 2021, 12. https://doi.org/10.3389/fneur.2021.768267.

Zhang, H.; Wu, C. 3D Printing of Biomaterials for Vascularized and Innervated Tissue Regeneration. International Journal of Bioprinting 2023, 9 (3). https://doi.org/10.18063/ijb.706.

Ng, W. L.; Qi, J. T. Z.; Yeong, W. Y.; Naing, M. W. Proof-of-Concept: 3D Bioprinting of Pigmented Human Skin Constructs. Biofabrication 2018, 10 (2), 025005. https://doi.org/10.1088/1758-5090/aa9e1e.

Kaufmann, B. K.; Rudolph, M.; Pechtl, M.; Geronimo Wildenburg; Hayden, O.; Hauke Clausen-Schaumann; Sudhop, S. MSLAb – an Open-Source Masked Stereolithography (MSLA) Bioprinter. HardwareX 2024, 19, e00543–e00543. https://doi.org/10.1016/j.ohx.2024.e00543.

Rahimeh Rasouli; Sweeney, C.; Frampton, J. P. Heterogeneous and Composite Bioinks for 3D-Bioprinting of Complex Tissue. Deleted Journal 2024. https://doi.org/10.1007/s44174-024-00171-7.

Zheng, K.; Chai, M.; Luo, B.; Cheng, K.; Wang, Z.; Li, N.; Shi, X. Recent Progress of 3D Printed Vascularized Tissues and Organs. Smart Materials in Medicine 2024, 5 (2). https://doi.org/10.1016/j.smaim.2024.01.001.

Gilbert, F.; O’Connell, C. D.; Mladenovska, T.; Dodds, S. Print Me an Organ? Ethical and Regulatory Issues Emerging from 3D Bioprinting in Medicine. Science and Engineering Ethics 2017, 24 (1), 73–91. https://doi.org/10.1007/s11948-017-9874-6.

Nale, T. .; Dhingra, K.; Verma, S. CRISPR-Cas9 As a Gene Editing Tool Using Cardiac Glycoside Reductase Operon for Digoxin Metabolism. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 224-232. https://doi.org/10.60087/jklst.v3.n4.p224.

Mehta, A.; da Silva Dias, L.; Espinal, M.; Jillellamudi, R.; Mathew, R. .; Chauhan, A.; Dhingra, K.; Verma, S. E-Health Implementation Challenges: A Comprehensive Review of Digital Healthcare in the United States. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 233–246. https://doi.org/10.60087/jklst.v2.n3.p233.

Precision Medicine With Data-driven Approaches: A Framework For Clinical Translation - Simranjit Kaur, Rowan Kim, Nisha Javagal, Joseph Calderon, Senia Rodriguez, Nithin Murugan, Kelsang Gyatsho Bhutia, Karan Dhingra, Saloni Verma - AIJMR Volume 2, Issue 5, September-October 2024. https://www.aijmr.com/research-paper.php?id=1077

Kirillova, A.; Bushev, S.; Abubakirov, A.; Sukikh, G. Bioethical and Legal Issues in 3D Bioprinting. International Journal of Bioprinting 2020, 6 (3). https://doi.org/10.18063/ijb.v6i3.272.

Chandna, R. .; Bansal, A.; Kumar, A.; Hardia, S.; Daramola, O.; Sahu, A.; Verma, K.; Dhingra, K.; Verma, S. Skin Disease Classification Using Two Path Deep Transfer Learning Models. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 169-187. https://doi.org/10.60087/jklst.v3.n4.p169.

Zuniga, J. M.; Peck, J. L.; Srivastava, R.; Pierce, J. E.; Dudley, D. R.; Than, N. A.; Stergiou, N. Functional Changes through the Usage of 3D-Printed Transitional Prostheses in Children. Disability and Rehabilitation: Assistive Technology 2017, 14 (1), 68–74. https://doi.org/10.1080/17483107.2017.1398279.

De Vivo Nicoloso, L. G.; Pelz, J.; Barrack, H.; Kuester, F. Towards 3D Printing of a Monocoque Transtibial Prosthesis Using a Bio-Inspired Design Workflow. Rapid Prototyping Journal 2021, 27 (11), 67–80. https://doi.org/10.1108/rpj-06-2021-0136.

Górski, F.; Wichniarek, R.; Kuczko, W.; Żukowska, M. Study on Properties of Automatically Designed 3D-Printed Customized Prosthetic Sockets. Materials 2021, 14 (18), 5240. https://doi.org/10.3390/ma14185240.

Cabibihan, J.-J.; Alkhatib, F.; Mudassir, M.; Lambert, L. A.; Al-Kwifi, O. S.; Diab, K.; Mahdi, E. Suitability of the Openly Accessible 3D Printed Prosthetic Hands for War-Wounded Children. Frontiers in Robotics and AI 2021, 7. https://doi.org/10.3389/frobt.2020.594196.

AOPA Statement on 3-D Printing in Prosthetics and Frequent Errant Estimates of the Average Cost of Upper and Lower Limb Custom-Fabricated Prosthetic Devices | AOPA – AMERICAN ORTHOTIC & PROSTHETIC ASSOCIATION. Aopanet.org. https://www.aopanet.org/2015/02/aopa-statement-on-3-d-printing-in-prosthetics-and-frequent-errant-estimates-of-the-average-cost-of-upper-and-lower-limb-custom-fabricated-prosthetic-devices/ (accessed 2024-12-14).

e-Nable. Enabling The Future. Enabling The Future. https://enablingthefuture.org/.

Hoque, M. E.; Riham, S. A. H.; Shuvo, Md. A. A. A Cost-Effective Prosthetic Leg: Design and Development. Hybrid Advances 2023, 2, 100017. https://doi.org/10.1016/j.hybadv.2022.100017.

van der Stelt, M.; Grobusch, Martin. P.; Koroma, Abdul. R.; Papenburg, M.; Kebbie, I.; Slump, Cornelis. H.; Maal, T. J. J.; Brouwers, L. Pioneering Low-Cost 3D-Printed Transtibial Prosthetics to Serve a Rural Population in Sierra Leone – an Observational Cohort Study. EClinicalMedicine 2021, 35, 100874. https://doi.org/10.1016/j.eclinm.2021.100874.

How Long Does It Take to Get a Prosthetic Leg? | PrimeCare Orthotics & Prosthetics. primecareprosthetics.com. https://primecareprosthetics.com/blog/how-long-does-it-take-to-get-a-prosthetic-leg.

Andrés-Esperanza, J.; Iserte-Vilar, J. L.; Llop-Harillo, I.; Pérez-González, A. Affordable 3D-Printed Tendon Prosthetic Hands: Expectations and Benchmarking Questioned. Engineering Science and Technology, an International Journal 2021. https://doi.org/10.1016/j.jestch.2021.08.010.

Omar, S.; Kasem, A.; Ahmad, A.; Seri Rahayu Ya’akub; Safwan Ahman; Yunus, E. Implementation of Low-Cost 3D-Printed Prosthetic Hand and Tasks-Based Control Analysis. Advances in intelligent systems and computing 2018, 213–223. https://doi.org/10.1007/978-3-030-03302-6_19.

How Long Does It Take to Get Fitted for an Upper Limb Prosthesis? www.armdynamics.com. https://www.armdynamics.com/upper-limb-library/how-long-does-it-take-to-get-fitted-for-an-upper-limb-prosthesis.

Alghothani, Y.; El Zamly, A. Abstract. Plastic and Reconstructive Surgery - Global Open 2016, 4, 131–132. https://doi.org/10.1097/01.gox.0000503056.86814.c5.

Ruthwik Guntupalli, Saloni Verma and Karan Dhingra 2024. Impact of Healthcare Digitization: Systems Approach for Integrating Biosensor Devices and Electronic Health with Artificial Intelligence. American Scientific Research Journal for Engineering, Technology, and Sciences. 98, 1 (Aug. 2024), 246–257, https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/10786/2789

N. Ashammakhi, S. Ahadian, C. Xu, H. Montazerian, H. Ko, R. Nasiri, N. Barros, A. Khademhosseini, Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs, Materials Today Bio, Volume 1, 2019, https://doi.org/10.1016/j.mtbio.2019.100008.

Downloads

Published

06-12-2024

How to Cite

Hasany, S. M., Verma, S., & Dhingra, K. . (2024). 3D printing prostheses using additive manufacturing and regenerative engineering. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 4(1), 39-51. https://doi.org/10.60087/jklst.v4.n1.005