Microneedles-mediated transdermal drug delivery techniques in modern medicine
DOI:
https://doi.org/10.60087/jklst.v4.n1.003Abstract
Transdermal Drug Delivery Systems (TDDS) present a transformative alternative to traditional drug administration methods,
addressing key challenges and revolutionizing the pharmaceutical industry. Despite the prevalence of traditional methods due
to their ease of administration and cost-effectiveness, they face limitations such as low bioavailability, gastrointestinal side
effects, patient non-adherence, and additional risks associated with invasive procedures. TDDS offer a near-painless
administration route that minimizes fluctuations in systemic drug exposure and enhances treatment adherence, especially in
low and middle-income countries. TDDS work by overcoming skin permeability barriers through modifications to drug
properties and the development of novel formulations and technologies, such as microneedles (MNs), which create micro-
channels in the skin for painless drug delivery. MNs have applications in treating various conditions, including HIV,
neurological disorders, diabetes, and cancer. Here in this review we discuss different types of MNs, such as dissolvable,
core–shell, and stimuli-responsive formulations and explore TDDS efficacy. Recent advancements, particularly in microneedle
technology, promise to revolutionize drug delivery methods, allowing for a more patient-friendly and effective means of
delivering necessary therapeutic agents.
Downloads
References
J. M. Abdo, N. A. Sopko, and S. M. Milner, “The applied anatomy of human skin: A model for regeneration,” Wound Medicine, vol. 28, no. 28, p. 100179, Mar. 2020, doi: https://doi.org/10.1016/j.wndm.2020.100179.
W. Y. Jeong, M. Kwon, H. E. Choi, and K. S. Kim, “Recent advances in transdermal drug delivery systems: a review,” Biomaterials Research, vol. 25, no. 1, Jul. 2021, doi: https://doi.org/10.1186/s40824-021-00226-6.
[3] “Transdermal drug delivery systems: all you need to know,” www.adhexpharma.com. https://www.adhexpharma.com/blog/transdermal-drug-delivery-systems-all-you-need-to-know
[4] “TDDS (Transdermal Drug Delivery System)|OperationsResearch & Development Organization|About Us|Hisamitsu Pharmaceutical co.,inc.,” global.hisamitsu. https://global.hisamitsu/operations/tdds.html
“Transdermal Drug Delivery System Market Size Report, 2030,” www.grandviewresearch.com. https://www.grandviewresearch.com/industry-analysis/transdermal-drug-delivery-systems-industry
H. J. Pandya et al., “A microfluidic platform for drug screening in a 3D cancer microenvironment,” Biosensors and Bioelectronics, vol. 94, pp. 632–642, Aug. 2017, doi: https://doi.org/10.1016/j.bios.2017.03.054.
[7] M. Safavieh et al., “Paper microchip with a graphene-modified silver nano-composite electrode for electrical sensing of microbial pathogens,” Nanoscale, vol. 9, no. 5, pp. 1852–1861, 2017, doi: https://doi.org/10.1039/c6nr06417e.
[8] T. Cheng et al., “Advance and Challenges in the Treatment of Skin Diseases with the Transdermal Drug Delivery System,” Pharmaceutics, vol. 15, no. 8, pp. 2165–2165, Aug. 2023, doi: https://doi.org/10.3390/pharmaceutics15082165.
[9] Yevedzo Chipangura et al., “Nanoporous Carbon Materials as Solid Contacts for Microneedle Ion-Selective Sensors,” ACS Applied Materials & Interfaces, Aug. 2024, doi: https://doi.org/10.1021/acsami.4c07683.
[10] Precision Medicine With Data-driven Approaches: A Framework For Clinical Translation - Simranjit Kaur, Rowan Kim, Nisha Javagal, Joseph Calderon, Senia Rodriguez, Nithin Murugan, Kelsang Gyatsho Bhutia, Karan Dhingra, Saloni Verma - AIJMR Volume 2, Issue 5, September-October 2024. https://www.aijmr.com/research-paper.php?id=1077.
K. S. Paudel, M. Milewski, C. L. Swadley, N. K. Brogden, P. Ghosh, and A. L. Stinchcomb, “Challenges and opportunities in dermal/transdermal delivery,” Therapeutic delivery, vol. 1, no. 1, pp. 109–131, Jul. 2010, Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995530/
M. Avcil and A. Çelik, “Microneedles in Drug Delivery: Progress and Challenges,” Micromachines, vol. 12, no. 11, p. 1321, Oct. 2021, doi: https://doi.org/10.3390/mi12111321.
J . Chen et al., “Microneedle-mediated drug delivery for cutaneous diseases,” Frontiers Bioengineering and Biotechnology, vol. 10, Oct. 2022., doi: https://doi.org/10.3389/fbioe.2022.1032041.
[14] GhavamiNejad P, GhavamiNejad A, Zheng H, Dhingra K, Samarikhalaj M, Poudineh M., “A Conductive Hydrogel Microneedle‐Based Assay Integrating PEDOT:PSS and Ag‐Pt Nanoparticles for Real‐Time, Enzyme‐Less, and Electro-chemical Sensing of Glucose,” Advanced Healthcare Materials, vol. 12, no. 1, Oct. 2022, doi: https://doi.org/10.1002/adhm.202202362.
S. Odinotski et al., “A Conductive Hydrogel‐Based Microneedle Platform for Real‐Time pH Measurement in Live Animals,” Small, vol. 18, no. 45, Sep. 2022, doi: https://doi.org/10.1002/smll.202200201.
[16] Pundlik, A.; Verma, S.; Dhingra, K. Neural Pathways Involved in Emotional Regulation and Emotional Intelligence. J. Knowl. Learn. Sci. Technol. 2024, 3 (3), 165-192. https://doi.org/10.60087/jklst.vol3.n3.p.165-192.
Periketi, P.; Kaur, K. .; Naseer Vaid, F. .; Sree M, Y. .; Madhu, M. .; Verma, S. .; Dhingra, K. . Blood Brain Barrier-on-a-Chip Permeation to Model Neurological Diseases Using Microfluidic Biosensors. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 78-93. https://doi.org/10.60087/jklst.v3.n4.p78.
X. Hou et al., “Advances and Prospects for Hydrogel-Forming Microneedles in Transdermal Drug Delivery,” Biomedicines, vol. 11, no. 8, p. 2119, Aug. 2023, doi: https://doi.org/10.3390/biomedicines11082119.
K. Ita, “Transdermal Delivery of Drugs with Microneedles—Potential and Challenges,” Pharmaceutics, vol. 7, no. 3, pp. 90–105, Jun. 2015, doi: https://doi.org/10.3390/pharmaceutics7030090.
[20] Gupte, P.; Dhingra, K.; Saloni , V. Precision Gene Editing Strategies With CRISPR-Cas9 for Advancing Cancer Immunotherapy and Alzheimer’s Disease. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 11-21. https://doi.org/10.60087/jklst.v3.n4.p11.
[21] U. Mandal, S. Mahmood, and M. Taher, “Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application,” International Journal of Nanomedicine, p. 4331, Sep. 2014, doi: https://doi.org/10.2147/ijn.s65408.
[22] Kazim, I.; Gande, T.; Reyher, E. .; Gyatsho Bhutia, K. .; Dhingra, K.; Verma, S. Advancements in Sequencing technologies:: From Genomic Revolution to Single-Cell Insights in Precision Medicine. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 108-124. https://doi.org/10.60087/jklst.v3.n4.p108.
[23] Y. Ye, J. Yu, D. Wen, A. R. Kahkoska, and Z. Gu, “Polymeric microneedles for transdermal protein delivery,” Advanced Drug Delivery Reviews, vol. 127, pp. 106–118, Mar. 2018, doi: https://doi.org/10.1016/j.addr.2018.01.015.
J. W. Lee, J.-H. Park, and M. R. Prausnitz, “Dissolving microneedles for transdermal drug delivery,” Biomaterials, vol. 29, no. 13, pp. 2113–2124, May 2008, doi: https://doi.org/10.1016/j.biomaterials.2007.12.048.
[25] S. M. Bal, J. Caussin, S. Pavel, and J. A. Bouwstra, “In vivo assessment of safety of microneedle arrays in human skin,” European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, vol. 35, no. 3, pp. 193–202, Oct. 2008, doi: https://doi.org/10.1016/j.ejps.2008.06.016.
Dongre, A. .; Nale, T. . .; Ramavajhala, A.; Mahanta, D. .; Sharma, . O. .; Wadhwa, H. H. .; Dhingra, K. .; Verma, S. . The Evolution of Transdermal Drug Delivery: From Patches to Smart Microneedle-Biosensor Systems. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 160-168. https://doi.org/10.60087/jklst.vol3.n4.p160.
B. Z. Chen, M. Ashfaq, X. P. Zhang, J. N. Zhang, and X. D. Guo, “In vitro and in vivo assessment of polymer microneedles for controlled transdermal drug delivery,” Journal of Drug Targeting, vol. 26, no. 8, pp. 720–729, Jan. 2018, doi: https://doi.org/10.1080/1061186x.2018.1424859.
[28] I.-C. Lee, J.-S. He, M.-T. Tsai, and K.-C. Lin, “Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery,” Journal of Materials Chemistry B, vol. 3, no. 2, pp. 276–285, 2015, doi: https://doi.org/10.1039/c4tb01555j.
[29] L. K. Vora, A. J. Courtenay, I. A. Tekko, E. Larrañeta, and R. F. Donnelly, “Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules,” International Journal of Biological Macromolecules, vol. 146, pp. 290–298, Mar. 2020, doi: https://doi.org/10.1016/j.ijbiomac.2019.12.184.
[30] I. Xenikakis et al., “Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro,” European Journal of Pharmaceutical Sciences, vol. 137, p. 104976, Sep. 2019, doi: https://doi.org/10.1016/j.ejps.2019.104976.
[31] P. González-Vázquez et al., “Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis,” Journal of Controlled Release, vol. 265, pp. 30–40, Nov. 2017, doi: https://doi.org/10.1016/j.jconrel.2017.07.032.
[32] S. A. Coulman et al., “In Vivo, In Situ Imaging of Microneedle Insertion into the Skin of Human Volunteers Using Optical Coherence Tomography,” Pharmaceutical Research, vol. 28, no. 1, pp. 66–81, May 2010, doi: https://doi.org/10.1007/s11095-010-0167-x.
[33] J. Arya, S. Henry, H. Kalluri, D. V. McAllister, W. P. Pewin, and M. R. Prausnitz, “Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects,” Biomaterials, vol. 128, pp. 1–7, Jun. 2017, doi: https://doi.org/10.1016/j.biomaterials.2017.02.040.
[34] Y.-Q. Yu, X. Yang, X.-F. Wu, and Y.-B. Fan, “Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications,” Frontiers in Bioengineering and Biotechnology, vol. 9, p. 646554, 2021, doi: https://doi.org/10.3389/fbioe.2021.646554.
[35] Tripathi, S.; Verma, S.; Dhingra, K. Microfluidics and Personalized Medicine towards Diagnostic Precision and Treatment Efficacy. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 213-223. https://doi.org/10.60087/jklst.v3.n4.p213.
[36] M. R. Prausnitz and R. Langer, “Transdermal Drug Delivery,” Nature Biotechnology, vol. 26, no. 11, pp. 1261–1268, Nov. 2008, doi: https://doi.org/10.1038/nbt.1504.
Nale, T. .; Dhingra, K.; Verma, S. CRISPR-Cas9 As a Gene Editing Tool Using Cardiac Glycoside Reductase Operon for Digoxin Metabolism. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 224-232. https://doi.org/10.60087/jklst.v3.n4.p224.
[38] T. Karpiński, “Selected Medicines Used in Iontophoresis,” Pharmaceutics, vol. 10, no. 4, p. 204, Oct. 2018, doi: https://doi.org/10.3390/pharmaceutics10040204.
[39] Zouhair Ait-Touchente et al., “Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges,” Nanomaterials, vol. 13, no. 10, pp. 1688–1688, May 2023, doi: https://doi.org/10.3390/nano13101688.
[40] Won Fen Wong, Kuan Ping Ang, G. Sethi, and Chung Yeng Looi, “Recent Advancement of Medical Patch for Transdermal Drug Delivery,” Medicina (Kaunas), vol. 59, no. 4, pp. 778–778, Apr. 2023, doi: https://doi.org/10.3390/medicina59040778.
[41] F. K. Aldawood, A. Andar, and S. Desai, “A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications,” Polymers, vol. 13, no. 16, p. 2815, Aug. 2021, doi: https://doi.org/10.3390/polym13162815.
[42] Mehta, A.; da Silva Dias, L.; Espinal, M.; Jillellamudi, R.; Mathew, R. .; Chauhan, A.; Dhingra, K.; Verma, S. E-Health Implementation Challenges: A Comprehensive Review of Digital Healthcare in the United States. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 233–246. https://doi.org/10.60087/jklst.v2.n3.p233.
[43] Kulkarni S, Dhingra K, Verma S., "Applications of CMUT Technology in Medical Diagnostics: From Photoacoustic to Ultrasonic Imaging", International Journal of Science and Research (IJSR), Volume 13 Issue 6, June 2024, pp. 1264-1269, https://www.ijsr.net/archive/v13i6/SR24619062609.pdf
Ruthwik Guntupalli, Saloni Verma and Karan Dhingra 2024. Impact of Healthcare Digitization: Systems Approach for Integrating Biosensor Devices and Electronic Health with Artificial Intelligence. American Scientific Research Journal for Engineering, Technology, and Sciences. 98, 1 (Aug. 2024), 246–257, https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/10786/2789.
[45] H. S. Gill, D. D. Denson, B. A. Burris, and M. R. Prausnitz, “Effect of Microneedle Design on Pain in Human Volunteers,” The Clinical Journal of Pain, vol. 24, no. 7, pp. 585–594, Sep. 2008, doi: https://doi.org/10.1097/ajp.0b013e31816778f9.
[46] Chilmakuri, L.; Mishra, A. K.; Shokeen, D. .; Gupta, P. .; Wadhwa, H. H.; Dhingra, K. .; Verma, S. A Wearable EMG Sensor for Continuous Wrist Neuromuscular Activity for Monitoring. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 148-159. https://doi.org/10.60087/jklst.v3.n4.p148.
[47] Raina, D.; Dawange, A.; Bandha, T.; Kaur, A.; Wasekar, R.; Verma, K.; Verma, S.; Dhingra, K. Convoluted Neural Network and Transfer Learning Algorithm for Improved Brain Tumor Classifications in MRI. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 200-212. https://doi.org/10.60087/jklst.v3.n4.p200.
[48] Chandna, R. .; Bansal, A.; Kumar, A.; Hardia, S.; Daramola, O.; Sahu, A.; Verma, K.; Dhingra, K.; Verma, S. Skin Disease Classification Using Two Path Deep Transfer Learning Models. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 169-187. https://doi.org/10.60087/jklst.v3.n4.p169.
[49] Gazerani P;Arendt-Nielsen L, “Cutaneous vasomotor reactions in response to controlled heat applied on various body regions of healthy humans: evaluation of time course and application parameters,” International journal of physiology, pathophysiology and pharmacology, vol. 3, no. 3, 2017, Accessed: Aug. 19, 2024. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/21941611
[50] N. Chandrashekar and R. Shobha Rani, “Physicochemical and pharmacokinetic parameters in drug selection and loading for transdermal drug delivery,” Indian Journal of Pharmaceutical Sciences, vol. 70, no. 1, p. 94, 2008, doi: https://doi.org/10.4103/0250-474x.40340.
[51] B. W. Barry, “Novel mechanisms and devices to enable successful transdermal drug delivery,” European Journal of Pharmaceutical Sciences, vol. 14, no. 2, pp. 101–114, Sep. 2001, doi: https://doi.org/10.1016/s0928-0987(01)00167-1.
[52] H. J. Pandya et al., “Label-free electrical sensing of bacteria in eye wash samples: A step towards point-of-care detection of pathogens in patients with infectious keratitis,” Biosensors and Bioelectronics, vol. 91, pp. 32–39, May 2017, doi: https://doi.org/10.1016/j.bios.2016.12.035.
[53] Thirupathi Reddy Yerramreddy, M. Milewski, Narsimha Reddy Penthala, A. L. Stinchcomb, and P. A. Crooks, “Novel 3-O-pegylated carboxylate and 3-O-pegylated carbamate prodrugs of naltrexone for microneedle-enhanced transdermal delivery,” Bioorganic & medicinal chemistry letters, vol. 20, no. 11, pp. 3280–3283, Jun. 2010, doi: https://doi.org/10.1016/j.bmcl.2010.04.049.
[54] Mehta, A.; Alaiashy, O.; Kumar, P.; Tamilinian, V.; Besong, S.; Balpande, S.; Verma, S.; Dhingra, K. Advancing Model-Based Systems Engineering in Biomedical and Aerospace research:: A Comprehensive Review and Future Directions. J. Knowl. Learn. Sci. Technol. 2024, 3 (4), 133-147. https://doi.org/10.60087/jklst.v3.n4.p133.
[55] Satyanarayana Valiveti, D. C. Hammell, K. S. Paudel, M. O. Hamad, P. A. Crooks, and A. L. Stinchcomb, “In vivo evaluation of 3-O-alkyl ester transdermal prodrugs of naltrexone in hairless guinea pigs,” Journal of Controlled Release, vol. 102, no. 2, pp. 509–520, Feb. 2005, doi: https://doi.org/10.1016/j.jconrel.2004.10.005.
[56] H. Marwah, T. Garg, A. K. Goyal, and G. Rath, “Permeation enhancer strategies in transdermal drug delivery,” Drug Delivery, vol. 23, no. 2, pp. 564–578, Jul. 2014, doi: https://doi.org/10.3109/10717544.2014.935532.
[57] So Hee Nam et al., “Ion pairs of risedronate for transdermal delivery and enhanced permeation rate on hairless mouse skin,” International Journal of Pharmaceutics, vol. 419, no. 1–2, pp. 114–120, Oct. 2011, doi: https://doi.org/10.1016/j.ijpharm.2011.07.027.
[58] A. S. Torky, M. S. Freag, M. M. A. Nasra, and O. Y. Abdallah, “Novel skin penetrating berberine oleate complex capitalizing on hydrophobic ion pairing approach,” International Journal of Pharmaceutics, vol. 549, no. 1–2, pp. 76–86, Oct. 2018, doi: https://doi.org/10.1016/j.ijpharm.2018.07.051.
[59] Q. Li, X. Wan, C. Liu, and L. Fang, “Investigating the role of ion-pair strategy in regulating nicotine release from patch: Mechanistic insights based on intermolecular interaction and mobility of pressure sensitive adhesive,” European Journal of Pharmaceutical Sciences, vol. 119, pp. 102–111, Jul. 2018, doi: https://doi.org/10.1016/j.ejps.2018.04.008.
[60] A. D. Bangham and R. W. Horne, “Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope,” Journal of Molecular Biology, vol. 8, no. 5, pp. 660-IN10, Jan. 1964, doi: https://doi.org/10.1016/s0022-2836(64)80115-7.
[61] G. Bozzuto and A. Molinari, “Liposomes as nanomedical devices,” International Journal of Nanomedicine, vol. 10, p. 975, Feb. 2015, doi: https://doi.org/10.2147/ijn.s68861.
[62] C. R. Safinya and K. K. Ewert, “Liposomes derived from molecular vases,” Nature, vol. 489, no. 7416, pp. 372–374, Sep. 2012, doi: https://doi.org/10.1038/489372b.
A. Ahad, Mohd. Aqil, K. Kohli, Y. Sultana, and Mohd. Mujeeb, “Enhanced transdermal delivery of an anti-hypertensive agent via nanoethosomes: Statistical optimization, characterization and pharmacokinetic assessment,” International Journal of Pharmaceutics, vol. 443, no. 1–2, pp. 26–38, Feb. 2013, doi: https://doi.org/10.1016/j.ijpharm.2013.01.011.
[64] “Google Scholar,” Google.com, 2019. https://scholar.google.com/scholar_lookup?journal=J+Drug+Deliv+Sci+Technol&title=Cilnidipine+loaded+transfersomes+for+transdermal+application:+formulation+optimization (accessed Aug. 19, 2024).
[65] H. Mirzaei, A. Shakeri, B. Rashidi, A. Jalili, Z. Banikazemi, and A. Sahebkar, “Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies,” Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, vol. 85, pp. 102–112, 2017, doi: https://doi.org/10.1016/j.biopha.2016.11.098.
[66] J. Hadgraft and M. E. Lane, “Transdermal delivery of testosterone,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 92, pp. 42–48, May 2015, doi: https://doi.org/10.1016/j.ejpb.2015.02.015.
C. Liu, Y. Guan, Q. Tian, X. Shi, and L. Fang, “Transdermal enhancement strategy of ketoprofen and teriflunomide: The effect of enhanced drug-drug intermolecular interaction by permeation enhancer on drug release of compound transdermal patch,” International Journal of Pharmaceutics, vol. 572, p. 118800, Dec. 2019, doi: https://doi.org/10.1016/j.ijpharm.2019.118800.
[68] A. Nokhodchi, J. Shokri, A. Dashbolaghi, D. Hassan-Zadeh, T. Ghafourian, and M. Barzegar-Jalali, “The enhancement effect of surfactants on the penetration of lorazepam through rat skin,” International journal of pharmaceutics, vol. 250, no. 2, pp. 359–69, 2003, doi: https://doi.org/10.1016/s0378-5173(02)00554-9.
[69] J. Piret et al., “Sodium Lauryl Sulfate Increases the Efficacy of a Topical Formulation of Foscarnet against Herpes Simplex Virus Type 1 Cutaneous Lesions in Mice,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 9, pp. 2263–2270, Sep. 2000, doi: https://doi.org/10.1128/aac.44.9.2263-2270.2000.
[70] L. van Zyl, J. du Preez, M. Gerber, J. du Plessis, and J. Viljoen, “Essential Fatty Acids as Transdermal Penetration Enhancers,” Journal of Pharmaceutical Sciences, vol. 105, no. 1, pp. 188–193, Jan. 2016, doi: https://doi.org/10.1016/j.xphs.2015.11.032.
P. W. Stott, A. C. Williams, and B. W. Barry, “Mechanistic study into the enhanced transdermal permeation of a model β-blocker, propranolol, by fatty acids: a melting point depression effect,” International journal of pharmaceutics (Print), vol. 219, no. 1–2, pp. 161–176, May 2001, doi: https://doi.org/10.1016/s0378-5173(01)00645-7.
[72] A. Cammarano, Stefania Dello Iacono, C. Meglio, and L. Nicolais, “Advances in Transdermal Drug Delivery Systems: A Bibliometric and Patent Analysis,” Pharmaceutics, vol. 15, no. 12, pp. 2762–2762, Dec. 2023, doi: https://doi.org/10.3390/pharmaceutics15122762.
[73] “Innovation to drive advanced drug delivery market,” European Pharmaceutical Review, 2024. https://www.europeanpharmaceuticalreview.com/news/214232/innovation-to-drive-advanced-drug-delivery-market/ (accessed Aug. 19, 2024).
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online)
This work is licensed under a Creative Commons Attribution 4.0 International License.
©2024 All rights reserved by the respective authors and JKLST.