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Abstract 

An advanced adaptive control strategy for zero-reaction motion control in free-floating space manipulators subject to kinematic 

and dynamic uncertainties. The primary challenge in developing the adaptive Reaction Null-Space (RNS)-based control 

framework lies in deriving a linearized formulation essential for adaptive control methods. This research addresses this issue by 

effectively extracting a novel linear expression, which enables the design of an adaptive RNS-based controller. Termed as the 

Adaptive Deep Learning-Enhanced Zero Reaction Motion Controller, this framework operates at the velocity level while 

incorporating both kinematic and dynamic unpredictability. Notably, we incorporate deep learning to enhance adaptability by 

approximating uncertain dynamics and to facilitate real-time parameter adjustments. The resulting controller achieves 

simultaneous attitude regulation of the spacecraft and accurate trajectory tracking of the end-effector. The efficacy and robustness 

of the proposed adaptive controller, augmented with deep learning, are demonstrated through numerical simulations on a planar 

6-DOF (degree-of-freedom) space manipulator, highlighting its potential in complex space operations. 
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1. Introduction 

In a range of space operations, such as the capture or 

maintenance of a malfunctioning or uncontrollably tumbling 

spacecraft, reliance on extra-vehicular activities (EVA) con-

ducted by astronauts presents significant risks. A safer and 

increasingly utilized alternative involves deploying robotic 

manipulators, which are now integral to space exploration and 

mission safety protocols (e.g., [1]–[5]). The manipulator's 

base platform, typically the spacecraft, remains unfixed in the 
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spatial environment, thus forming a coupled manipulator-

spacecraft system, widely referenced in academic and engi-

neering literature as a 'space manipulator.' During operations 

involving manipulation of various noncooperative objects, the 

system inevitably encounters parametric uncertainties that can 

detrimentally affect the accuracy of trajectory tracking [6]. 

Adaptive control, a well-established methodology, has tradi-

tionally been leveraged to mitigate the impact of such uncer-

tainties [7]. However, this study advances this approach by in-

tegrating deep learning techniques within an adaptive frame-

work, enhancing the system's robustness to dynamically vary-

ing parameters and unmodeled environmental disturbances. 

Through real-time approximation and compensation for un-

certainty, the deep learning-enhanced adaptive controller op-

timizes manipulation accuracy while maintaining system sta-

bility, ultimately broadening the scope of achievable autono-

mous tasks in space environments. 

Extensive research has been dedicated to the coordination 

control between a manipulator and its free-floating base in 

space applications. In [8], the researchers introduced a joint 

cyclic motion algorithm, allowing the spacecraft orientation to 

remain constant throughout operation. [9] made a pivotal ad-

vancement in control systems by developing an algorithm ca-

pable of simultaneously regulating both spacecraft attitude 

and manipulator joint angles. This algorithm leverages the 

Lyapunov method to ensure system stability, providing a rig-

orous foundation for stability analysis in dynamic space envi-

ronments: a cornerstone that this work builds upon to enhance 

control precision and adaptability. Motion planning for inter-

connected rigid body systems was explored in [10], with ap-

plications in space robotics. In related work, Dubowsky and 

Torres formulated a joint motion control approach using the 

Enhanced Disturbance Map (EDM), aiming to minimize the 

disturbance exerted on spacecraft orientation [11]. Yamada 

proposed a trajectory planning method utilizing variational 

techniques, enabling spacecraft attitude control to a desired 

orientation. Additionally, [13] proposed a self-adaptive ro-

bustness motion control technique for the high-DoF robot ma-

nipulator, aimed at regulating both spacecraft attitude and ma-

nipulator joint positioning. This method marked a significant 

step in coordinated control. A significant contribution to this 

field was made in [14], which introduced a point-to-point 

planning approach based on high-order polynomial trajecto-

ries. This method enabled precise regulation of both the space-

craft and manipulator without requiring cyclic manipulator 

motion, establishing a foundational approach for trajectory 

planning. However, it introduced bounded constraints on the 

achievable spacecraft attitude, highlighting a limitation that 

this work seeks to address and build upon. 

 

The Reaction Null-Space (RNS) algorithm, presented in 

[15], diverges from the techniques by facilitating end-effector 

trajectory tracking and attitude stabilization through 

manipulator degrees of freedom alone. Recognized as a solu-

tion that circumvents the necessity for cyclic motion and atti-

tudinal constraints, RNS leverages manipulator redundancy 

for enhanced control flexibility. Building on this concept, this 

study introduces an innovative adaptive RNS-based approach 

augmented with deep learning. Through deep neural network 

integration, the method learns complex dynamics and en-

hances control adaptability to uncertain environmental condi-

tions, thereby providing robust trajectory tracking and attitude 

regulation without manual trajectory constraints or recurrent 

motion sequences. 

In this research, we adeptly derive a linearized formulation 

that captures the influence of uncertain parameters, facilitating 

the development of a deep learning-enhanced adaptive zero 

reaction motion control strategy. For adaptive control part, we 

employ the algorithm from [16], which introduced an innova-

tive adaptive detumbling approach for non-rigid satellites ad-

dressing the detumbling problem. This algorithm lays a criti-

cal foundation for advancements in servicing and repairing 

non-rigid aerospace devices, establishing essential methodol-

ogies not only in aerospace filed, but also in any non-rigid 

body manipulation task using robotics system in different en-

vironments. This algorithm is designed to accommodate both 

dynamic and kinematic uncertainties, which may stem from 

imprecise knowledge of the manipulator's parameters, or the 

properties of an unknown target object engaged by the manip-

ulator. Unlike the approach in [17], our method not only man-

ages adaptive control but also concurrently regulates the 

spacecraft's attitude. Two velocity-level joint control algo-

rithms are systematically developed to achieve: 1) attitude sta-

bilization for the spacecraft while optimizing a broad range of 

performance indices and 2) combined spacecraft attitude reg-

ulation and precise end-effector trajectory tracking. Our key 

contribution lies in presenting a deep learning-based adaptive 

zero reaction motion controller for free-floating space manip-

ulators (FFSMs), extending previous works (e.g., [18], [19]) 

to address cases involving uncertain parameterization. This 

approach, augmented by deep learning, effectively handles 

kinematic uncertainties [20], broadening results previously re-

stricted to fixed-base robots [21, 22] and FFSMs. Additionally, 

we consider cases where the system initiates with non-zero 

linear and angular momenta, an advancement over the prelim-

inary work in [23], which was limited to zero initial momenta. 

Here, deep learning further enables adaptive adjustments 

based on observed dynamics, enhancing robustness across a 

wider range of initial conditions. 

 

2. Methodology 

In mechanical systems, achieving a precise physical model 

is inherently challenging due to factors such as measurement 
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inaccuracies and wear over time. Consequently, in practical 

applications, control strategies that emphasize robustness and 

resistance to disturbances are crucial [24-28]. To enhance the 

stability of manipulator systems, a prevalent approach in-

volves employing fuzzy logic and neural network controllers 

to estimate and mitigate time-varying internal friction [29]. 

While fuzzy control can be effective, its design complexity—

particularly in selecting optimal membership parameters and 

defining suitable fuzzy rules—presents significant challenges. 

Neural networks, with their powerful learning capabilities, ex-

cel in approximating both linear and nonlinear functions and 

exhibit strong adaptability and resilience, making them highly 

suitable for control design [30]. Additionally, terminal sliding 

mode control (TSMC) offers the advantage of driving the sys-

tem state to zero while maintaining high robustness, which has 

garnered considerable interest in technological research and 

industrial applications. 

2.1. Dynamics of the Manipulator System 

For a manipulator with an arbitrary number of 𝑛 joints, its 

dynamics can be represented by the following model: 

𝑀(𝜃)𝜃̈ + 𝐶(𝜃, 𝜃̇)𝜃̇ = 𝜏 

where 𝜃 ∈ 𝑅𝑛 is the joint angular displacement matrix of the 

manipulator, 𝜃̇ ∈ 𝑅𝑛 is the angular velocity matrix, 𝜃̈ ∈ 𝑅𝑛 

is the angular acceleration matrix, 𝜏 ∈ 𝑅𝑛 is the driving force 

matrix acting on the joint of the manipulator. 𝑀(𝜃) ∈ 𝑅𝑛×𝑛 

is the inertia matrix which is positive definite, coloris and cen-

tripetal symmetric inertia matrix, 𝐶(𝜃, 𝜃̇) ∈ 𝑅𝑛×𝑛  

 𝐶(𝜃) ∈ 𝑅𝑛×𝑛 is the Coriolis and centripetal symmetric ma-

trix which is also positive definite. Let 𝑥 ∈ 𝑅𝑛 be the posi-

tion coordinates of the end of the manipulator in the task space 

as  

𝑥 = 𝑓(𝜃) 

where 𝑓(⋅) is the nonlinear mapping relationship from angle 

space to task space. According to the definition of matrix 

𝐶(𝜃, 𝜃̇) is a skew symmetric matrix, and there is a variable 

𝛽 ∈ 𝑅𝑛  which makes 𝛽T𝐶(𝜃, 𝜃̇)𝛽 . if the inertia matrix 

𝑀(𝜃) is a symmetric positive definite matrix, then it has a 

positive number 𝑚1, 𝑚2 make the following inequality true: 

𝑚1|𝑥
2| ≤ 𝑥T𝑀(𝜃)𝑥 ≤ 𝑚2|𝑥

2| 

Note that there exist any differentiable vector 𝛽 ∈ 𝑅𝑛 match 

the following requirements: 

𝐽(𝜃)𝛽 = Γ𝑘(𝜃, 𝛽)𝛿𝑘 

where Γ𝑘(𝑞, 𝛽) ∈ 𝑅𝑛×𝑛 is the kinematic regression matrix of 

the robot manipulator, 𝛿𝑘 ∈ 𝑅𝑚 is the kinematic parameter 

vector. 

To address the challenge posed by model uncertainties, 

which impair tracking accuracy, a strategy integrating the 

Deep Neural Network (DNN) identifier with an DNN-based 

adaptive controller is implemented. Given the unavailability 

of the manipulator's precise dynamic model [32], accurately 

determining its tracking error proves challenging, thereby pre-

cluding its direct use in training the DNN adaptive controller. 

Instead, only after the DNN identifier undergoes comprehen-

sive training can it serve as an approximate substitute for the 

manipulator's dynamic model, subsequently contributing to 

the adaptive controller's training process.  

2.2. Adaptive Controller Design 

To accomplish spacecraft attitude stabilization for a space 

manipulator with uncertain dynamics and nonzero initial mo-

mentum, we propose the following kinematic control strategy: 

𝜻̇𝑟
∗ = (𝐔𝑛×𝑛 − 𝐏⃗⃗ ̂𝑏𝑚

+ 𝐏⃗⃗ ̂𝑏𝑚) 𝜻 + 𝐏⃗⃗ ̂𝑏𝑚
+ (𝐩0 + Δ𝝐𝑏𝑣) 

where 𝐏⃗⃗ ̂𝑚 is obtained by replacing the dynamic parameters 

in 𝐏
¯

𝑚 with its estimates. Then we can add 𝐏⃗⃗ ̂𝑏𝝎𝑏 + 𝐏
¯̂

𝑚𝝓̇ to 

get  

P̂𝑏(𝝎𝑏 + 𝜆𝑏Δ𝝐𝑏𝑣) + (𝝓̇ − 𝝓̇𝑟
∗)

= Δ𝐏
¯

𝑏𝝎𝑏 + Δ𝐏
¯

𝑏𝑚𝝓̇ − Δ𝐩0

= [𝚪𝑑(𝝐𝑏 , 𝝓,𝝎𝑏 , 𝝓̇) −𝐄3×3] [
Δ𝐚𝑑

Δ𝐩0
]

= 𝐘
 

𝑑Δ𝛿
 

𝑑

 

Then we can get the generalized dynamics parameter estima-

tor with above deductions. 

2.3. DNN adaptive controller Design 

Adaptive control necessitates a designated free path motion 

mode, whereby the manipulator is directed to move along a 

specified trajectory from a defined start point to an endpoint. 

This trajectory is formulated based on a function that links the 

manipulator’s current position with respect to time. The plan-

ning objective is to determine a path that avoids conflicts 

across the manipulator’s joints. Utilizing the manipulator’s 

dynamic equations and additional constraints, real-time posi-

tional adjustments are derived to follow the required trajectory 

precisely. Consequently, manipulator motion planning can be 

achieved within both joint space and Cartesian space. A pri-

mary benefit of joint space-based trajectory planning lies in 

the simplicity of controlling the trajectory via the manipula-

tor’s joint variables. Therefore, the rotational functions of the 

manipulator become essential in executing the trajectory path. 

Ultimately, by leveraging the rotation functions, the manipu-

lator can realize a concrete trajectory path. A commonly ap-

plied solution is the DNN controller, which is adept at address-

ing this planning challenge as  

{
𝑤𝑒(𝑘) = [𝑥(𝑘); 𝑧(𝑘 − 1)]

𝑢𝑒(𝑘) = 𝜏(𝑘)
 

In practical industrial applications, manipulator systems 

frequently encounter uncertainties, including internal friction 

and time-dependent disturbances. The filtering tracking error 

function is defined as follows: 
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𝜉(𝑢𝑐) = 𝑀(𝜃)(𝜃̈𝑑 + Λ𝑒̇) + 𝐺(𝜃) + Γ(𝜃̇)

+𝐶(𝜃, 𝜃̇)(𝜃̇𝑑 + Λ𝑒)
 

2.4. Stability Analysis 

Backstepping control, also referred to as dynamic surface 

control, is a prominent nonlinear system design methodology. 

This approach primarily employs the construction of a Lya-

punov function to derive a stabilizing control law, utilizing a 

recursive procedure to guarantee global stability. Originally 

introduced by Kaktovik and colleagues in the 1990s, back-

stepping control has since undergone significant advance-

ments within the control systems field. The core design prin-

ciple of backstepping involves decomposing the nonlinear 

model into subsystems, each of lower order than the entire 

system. Sequentially, Lyapunov functions and virtual control 

variables are formulated for these subsystems to maintain Lya-

punov stability, ultimately leading to complete system design. 

The final control law developed in [32] plays a critical role in 

ensuring that the closed-loop system satisfies both dynamic 

and static performance requirements, effectively aligning with 

the desired control objectives. Backstepping control has broad 

applications, including inverter control, synchronous motor 

regulation, robotic trajectory tracking, and nonlinear object 

tracking with unknown hysteresis. In most cases, the system's 

stability is rigorously validated through the construction of an 

appropriate Lyapunov function as 

𝑉 = −
1

2
𝑟⊤𝑀𝑟 +

1

2
tr (Γ𝜂

⊤𝐶−1Γ𝜂) 

where Γ𝜂 = Γ̃𝜂 − Γ𝑑. After finishing all deductions we can get  

𝑉̇ = 𝑟⊤𝑀𝑟⊤ +
1

2
𝑟⊤𝑀̇𝑟 + tr(Γ𝜂

 ⊤𝐶−1Γ𝜂
 ⊤) 

Then we can get 

𝑟⊤(𝜀 + 𝑣) = 𝑟⊤𝜀 + 𝑟⊤𝑣 = 𝑟⊤𝜀 − 𝑟⊤𝜀𝑁 ≤ 0 

According to Lyapunov stability judgment law, the control 

system is stable. Therefore, through the design of the control 

rate, the stability of the system is guaranteed by the Lyapunov 

function stability condition. 

4. Results 

We assigned two different simulation task for our satellite 

module using different method during the repairing tasks 

During the simulation testing phase, the comparison results 

control algorithm was implemented to evaluate system perfor-

mance. The outcomes of this simulation are illustrated in Fig. 

1 and Fig. 2. 

Fig. 1 illustrates the torque from the robot manipulator 

alongside under the PD control algorithm, traditional adaptive 

control and decentralized adaptive control. The blue line de-

notes the intended trajectory, while the orange line represents 

the manipulator's actual motion path. Observing Fig. 1, it is 

evident that the discrepancy between the actual and expected 

paths is relatively pronounced throughout the entire operation, 

particularly within the time interval – 

T=50–80ms. In the subsequent analysis, we delve into the 

error dynamics between the expected and actual trajectories of 

the manipulator. 

 
Figure 1. Torque applied by the end-effector of the robot manipula-

tor during the self-adaption process during different methods in 

task-1. 

 
Figure 2. Torque applied by the end-effector of the robot manipula-

tor during the self-adaption process during different methods in 

task-2
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Figure 3. Diagram of the Deep Learning Neural network based adap-

tive control in satellite repairing system.

 

Figure 4. Accuracy during the testing process with 300 epoch. 

 

Figure 5. Expected trajectory and tracking trajectory of manipula-

tor based on PD method 

Fig. 2 presents the deviation between the manipulator's ex-

pected trajectory and its actual path under the PID control al-

gorithm. The error metric employed in this study is derived by 

calculating the difference between the desired trajectory and 

the tracking path. As observed in Fig. 2, the error magnitude 

within the PD-controlled system oscillates between -0.5 and 

0.5 radians, characterized by significant fluctuations through-

out the operational range. 

In the manipulator’s motion model, an adaptive control 

strategy utilizing a DNN is implemented to mitigate the dis-

crepancy between the desired and actual trajectories. During 

the simulation, we configure the parameters as follows: the 

time step is set to 0.01 ms, and the manipulator’s initial state 

vector is initialized to Moreover, in alignment with the neural 

network algorithm, the learning rate is adjusted to 0.1. The 

outcomes of these settings are illustrated in the simulation fig-

ure. 

In Fig. 5, the blue line represents the desired trajectory of 

the manipulator, while the orange line illustrates its actual tra-

jectory. Analyzing Fig. 3, it is evident that the designed oper-

ational curve is nonlinear, with a peak amplitude of 1 radian 

and a minimum of -1 radian. However, within the interval 

t=10ms the curve deviates slightly from the anticipated pattern, 

failing to transition smoothly from the maximum to the mini-

mum value. This nonlinear profile serves as a robust test for 

evaluating the manipulator’s tracking capabilities. For a con-

ventional, fixed-function test curve, the neural network's 

learning rate typically results in tracking behavior that mirrors 

prior path dynamics. However, the irregular nonlinear trajec-

tories in this study demonstrate a high tracking fidelity, with 

the manipulator accurately adhering to the expected trajectory 

even within the challenging interval [33]. Beyond this region, 

the deviation between the actual and desired trajectories 



Journal of Knowledge Learning and Science Technology  https://jklst.org/index.php/home   

 

318 

remains minimal. Fig. 3 underscores that the manipulator sys-

tem effectively tracks the specified path with a rapid response 

time. The simulation results further reveal that, despite uncer-

tainties like internal friction, time-varying disturbances, and 

an unknown dynamic model, the DNN adaptive controller 

coupled with an identifier achieves superior trajectory track-

ing [34]. This approach not only mitigates the effects of vari-

ous uncertain factors but also provides high approximation ac-

curacy for nonlinear functions, thereby ensuring precise track-

ing of the desired trajectory. 

6. Conclusions 

In this study, an adaptive zero-reaction joint motion control-

ler operating at the velocity level has been developed for free-

floating space manipulators with uncertain kinematic and dy-

namic characteristics. A significant challenge in designing an 

adaptive controller lies in the inability to linearly parameterize 

the DNN-based kinematic control law. By meticulously ana-

lyzing the structure of the RNS-based controller, we have ef-

fectively formulated a linear expression that facilitates the der-

ivation of the adaptive controller. Leveraging the properties of 

the vector ζ, we propose an adaptive controller capable of 

achieving both precise trajectories tracking of the end-effector 

and robust attitude regulation of the spacecraft. Future work 

will extend this adaptive zero-reaction controller design to the 

acceleration level, aiming to further enhance control precision 

[35]. 
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