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Abstract 

Artificial intelligence (AI) has made significant use cases to improve patient care, particularly in medical image analysis. This 

study aims to develop a deep-learning model for disease classification in medical images and compare its performance in four-

class MRI and two-class X-ray classification tasks. We utilize Convolutional Neural Networks (CNNs) for diagnosing 

pneumonia from chest X-rays and various tumors from brain MRIs, leveraging transfer learning to improve performance. 

Transfer learning, which reuses pre-trained models like VGG-16, is more efficient than building models from scratch. The VGG-

16 model, pre-trained on over a million ImageNet images, achieved 92.7% accuracy. By fine-tuning, we reached 93.6% accuracy. 

Data augmentation techniques, such as flipping, rotation, and brightness adjustments, further enhance classification accuracy 

and performance. 
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1. Introduction

Medical image analysis has been an important aspect in many 

ways, helping the doctors and the diagnosis for further 

medical processing. It reveals the internal structures hidden 

under the skin and detects the type of disease that occurred, 

the crucial treatment can be done [1]. In the year 2017 when 

we received the approval to introduce artificial intelligence 

(AI) into the medical field for detecting distinct images it 

helped in a more concise way with an increase in accuracy, 

improving the quality and data processing. Day by day the 

technology has been improved making it possible to control 

the numerous diagnoses within a short period and helping the 

doctors in a great way providing detailed information about 

each problem that occurred [2]. Machine learning (ML) is an 

AI algorithm that allows the system to learn from the data and 

provides accurate predictions about the abnormality by 

identifying the patterns from training sets [3]. Deep learning 

(DL) is the subset of ML that conforms to whether the results 

were accurate or predicted without any human intervention. 

Convolutional neural network (CNN) has been an impactful 

artificial network helping in image analysis, image 

registration, image segmentation, feature extraction, and 

classification [4]. From the year 2014, many image algorithms 

have been developed in the medical field to enhance perfect 

diagnostic results [5]. In 2006 the concept of deep learning 

was proposed with an artificial neural network (ANN) model 

through several layers. Scientists such as Bzdok and Ioannidis, 

Litjens et al, Razzak et alKourou et al, and many more have 

worked on the development of neural networks, provided the 

importance of DL models and their roles and have studied 

different backgrounds and their tremendous results of the 

related images [6]. They also identified the challenges in using 

the networks and discussed the importance of exploration, 

inference, and prediction in the fields of neuroscience and 

biomedical science [7]. The scientists have highlighted the 

potential of deep learning algorithms and even the challenges 

that took the frame, they have analyzed several challenges 

associated with the use of these algorithms such as pixel or 

data quality, identifying relevant health information and 

privacy concerns, and even found a route to the solution to 

each of the problems facing in the field [8]. They found the 

importance of integrating the data types such as neuroimages, 

genetics, and many more. The deep learning models have 

become the most prominent topic around the machine learning 

area that could help in almost every factor of human life, even 

displaying future births [9].  

Digital image processing and medical image analysis can 

significantly support medical diagnosis by providing the 

necessary tools for automatic detection, extracting significant 

information, and accurate measurement of visible 

abnormalities [10]. However, amid the high expectations of 

the accuracy and efficiency that AI can bring to medicine, 

many challenges have yet to be overcome to integrate the new 

generation of CAD tools into clinical practice and to minimize 

the risk of unintended harm to patients [11]. The challenges 

related to medical images include automation challenges, 

security challenges, clinical challenges, technical challenges, 

and challenges that arise during the various stages of image 

processing including segmentation challenges and pre-

processing challenges. However as deep learning methods 

have achieved state-of-the-art performance over different 

medical applications, its use for further improvement can be 

the major step in the medical computing field. Therefore, there 

is a significant need to fill the gap of missing a comprehensive 

overview of these challenges [12].  

Errors or uncertainties in image processing cannot be avoided. 

Some of them are common in image processing such as those 

related to image acquisition (limited resolution, distortion). 

Others are related to the interpretation of the images by 

humans, as well as those related to the limited capability of 

the used techniques and methods [13]. Medical image analysis 

by human experts is relatively limited due to image 

complexity, the existence of wide disparities across diverse 

experts, and fatigue. Automated tools for image acquisition, 

diagnosis, enhancement, and interpretation based on machine 

learning algorithms provide accurate and efficient solutions 

for improving medical image processing. Hence, Despite all 

the given challenges, digital image processing technologies 

provide the most effective medical image processing, which 

helps in disease diagnosis as well as many treatments [14]. 

Digital image processing extracts meaningful information 

from images, automates image-based tasks, and enhances the 

visual quality of images, making them clearer, sharper, and 

more informative. It can automate many image-based tasks, 

such as object recognition, pattern detection, and 

measurement. Digital image processing algorithms can 

process images much faster than humans, making it possible 

to analyze large amounts of data in a short amount of time and 

can also provide more accurate results, especially for tasks 

that require precise measurements or quantitative analysis 

[15]. DL techniques using neural networks have been used for 

https://doi.org/10.1016/j.job.2022.03.003
https://doi.org/10.1016/j.suc.2018.03.006
https://journals.lww.com/apjoo/fulltext/2019/05000/promising_artificial_intelligence_machine.13.aspx#:~:text=10.22608/APO.2018479
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.60087/jklst.v3.n4.p148
https://link.springer.com/article/10.1007/s11277-017-5224-x#citeas:~:text=DOI-,https%3A//doi.org/10.1007/s11277%2D017%2D5224%2Dx,-Keywords
https://doi.org/10.1016/j.neucom.2016.06.014
https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/10786/2789
https://doi.org/10.1016/j.jid.2018.01.028
https://doi.org/10.60087/jklst.v3.n4.p78
https://doi.org/10.1016/j.compmedimag.2007.02.002
https://doi.org/10.1016/j.bios.2017.03.054
https://www.nature.com/articles/s41746-022-00592-y
https://www.ijsr.net/ar-chive/v13i6/SR24619062609.pdf
https://www.simplilearn.com/image-processing-article
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an array of applications including supporting clinicians in 

achieving diagnostic perfection [16]. Following this, a high-

tech algorithm or an image analysis tool is developed that can 

be used to diagnose basic diseases using X-ray or MRI 

pictures. This model is built using the weights from the VGG-

16 pre-trained model i.e. by the mode of transfer learning. 

Also, a rationale behind using this pre-trained model and 

general networks that aid in improving accuracy is provided 

in this research article.   

2. Methods 

By leveraging a large amount of annotated data, DL models 

can learn intricate patterns and relationships within medical 

images, facilitating accurate detection, localization, and 

diagnosis of disease and abnormalities [17]. Creating an 

image diagnosis of X-rays and MRI images can support 

clinicians in achieving diagnostic perfection. However deep 

learning methods are highly effective when the number of 

available samples is large [18]. Existing research says that 

through deep learning the highest performance reached a top 

curve that X-rays and MRI images can identify and detect 

multiple images only after training on extensive data sets. In 

2012, Krizhevsky et al proposed a CNN with five 

convolutional layers and 3 fully connected layers (named 

“AlexNet”) containing over 60 million weights for training 

1.2 million images with annotations and achieved in ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) [11] 

that classified over 1000 classes of images. DL enables the 

quantitative analysis of medical images, extracting 

meaningful measurements and biomarkers. For example, 

estimating tumor volume, measuring decreased progression 

time, or assessing treatment response by qualifying changes in 

medical images; this quantitative information assists 

clinicians in making objective assessments, monitoring 

disease progression, and tailoring treatment plans [19]. For 

data-driven learning, large-scale and well-annotated datasets 

with representative data distribution characteristics are crucial 

to learning more accurate or general models. The CNN models 

trained upon this database serve as the backbone for 

significantly improving many object detection and image 

segmentation problems [20]. One of the primary advantages 

of deep learning over traditional ML methods is its capacity 

to learn features from raw data automatically, allowing it to 

capture underlying patterns, making it powerful with large, 

complex datasets. Deep learning has also facilitated 

significant advancements in various tasks, including but not 

limited to image and speech recognition, comprehension of 

natural language, and the development of capabilities [19, 21]. 

2.1. Dataset and Image Parameters 

For X-ray & MRI, there are many datasets available to 

conduct training and testing through including but not limited 

to VinBigData for chest X-rays, Re3Data for general research, 

CT Data Set for cancer research and the National Institute of 

Health (NIH) Database for chest X-rays. In this study, we used 

Brain MRIs for Tumor Classification (1,311 images) and 

Chest X-ray Images (Pneumonia) (5,863 images) as described 

in Table 1. A total of 40932676 image parameters were used 

for the model with, 26217988 trainable parameters, and 

14714688 non-trainable parameters.  

 

Dataset Modality Size Split Ratio 

(train/test) 

Resolution 

Brain MRIs for Tumor Detection MRIs 1,311 80/20 224

x22

4 

Chest X-Ray 

Images  

X-rays 5,863 80/20 224x224 

Table 1.  Dataset parameters used in the study.

2.2. Evaluation Index and Metrics 

A typical medical image analysis system (here, VGG-16) is 

evaluated by using different key performance measures such 

as accuracy, F1-score, precision, recall, sensitivity, 

specificity, and dice coefficient [22]. Mathematically, these 

classification metrics are calculated as, 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
                                 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                                            (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝑇𝑁)
                                                                 (3) 

https://doi.org/10.48550/arXiv.1906.02664
https://doi.org/10.1007/s11042-021-10707-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479722/#R2:~:text=%3A85%E2%80%93117.-,%5BPubMed%5D%20%5BGoogle%20Scholar%5D,-3.%20Bengio
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442218/#R29
https://link.springer.com/article/10.1007/s11042-022-14305-w#ref-CR33:~:text=.%20https%3A//doi.org/10.1016/j.jacr.2017.12.028
https://www.researchgate.net/publication/292996483_Deep_Convolutional_Neural_Networks_for_Computer-Aided_Detection_CNN_Architectures_Dataset_Characteristics_and_Transfer_Learning
https://link.springer.com/article/10.1007/s11042-022-14305-w#ref-CR33:~:text=.%20https%3A//doi.org/10.1016/j.jacr.2017.12.028
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662291/#ref4:~:text=jtd.2018.02.76%2C%20PMID%3A-,%5BPMC%20free%20article%5D%20%5BPubMed%5D%20%5BCrossRef%5D,-%5BGoogle%20Scholar
https://arxiv.org/abs/2202.05273
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                                                               (4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                                         (5) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                                         (6) 

𝐷𝑖𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =  
2 ×| 𝑃 ⋂⬚

⬚
𝐺𝑇 |

| 𝑃 |+| 𝐺𝑇 |
                                                      (7) 

Where,  

TP = true positive, represents the number of cases correctly 

recognized as defected.  

FP = false positive, represents the number of cases incorrectly 

recognized as defected.  

TN = true negative, represents the number of cases correctly 

recognized as non-defected.  

FN = false negative, represents the number of cases 

incorrectly recognized as non-defected.  

P = prediction as given by the system being evaluated for a 

given testing sample. 

GT = ground truth of the corresponding testing sample. 

Table 2 describes the applications and descriptions of 

evaluation metrics.  

 

Metric Description Application 

Accuracy Proportion of correct predictions Overall Performance 

F1 Score Combines Precision and Recall Indicates Reliability of the model 

Recall Quantifies amount of positive class 

predictions 

Identifies the model’s ability to make correct predictions 

Precision Indicates how often a machine makes true 

positive predictions 

Identifies the model’s ability to make correct predictions 

Sensitivity True Positive Rate Identifies how many positive instances the model was able to 

identify accurately 

Specificity True Negative Rate  Identifies how many negative instances the model was able to 

identify accurately 

Dice Score Measure of similarity between two data sets Evaluates the similarity between a predicted segmentation mask 

and the ground truth segmentation mask [23] 

Table 2. Applications of evaluation metrics.

2.3. Architecture  

The application of machine learning to MRI and X-ray data 

facilitates the transformation of these datasets into 

mathematical models, enhancing data analysis efficiency. 

These models categorize the data into three distributions: (a) 

Positive skew (most values cluster around values less than the 

mean value). (b) Symmetrical Distribution (equal frequencies 

of data above and below the central value). (c) Negative skew 

(most values cluster around values greater than the mean 

value), all of which operate under the principles of probability 

and statistics, enabling a deeper understanding of the data 

through mathematical problem-solving. By leveraging 

statistical measures such as mean, mode, and median, these 

models achieve higher accuracy in data analysis [24]. 

Transfer learning (TL) stems from cognitive research that uses 

the idea that knowledge is transferred across related tasks to 

improve performance on a new task [25]. Benefitting from the 

development of deep learning, the analysis of medical images, 

which used to be a challenging, yet exhausting task carried out 

manually by physicians, has also experienced fast 

development. Small-scale data can’t guarantee the 

performance of the developed systems, while large-scale data 

is usually unavailable due to expensive costs in the collection 

and storage process [26]. To allow a fast transition from one 

domain to another for reuse, experts and researchers have 

extensively delved into transfer learning, which is an efficient 

and low-cost learning technique [27]. Applying these concepts 

to machine learning and neural networks, a network can be 

trained by transferring the weights and specifications of 

another pre-trained model. The exception is the last fully 

connected layer whose number of nodes depends on the 

number of classes in the dataset. A common practice is to 

replace the last fully connected layer of the pre-trained CNN 

with a new fully connected layer that has as many neurons as 

https://oecd.ai/en/catalogue/metrics/dice-score
https://doi.org/10.1155/2022/3035426
https://doi.org/10.1007%2F978-3-030-87722-4_1
https://doi.org/10.3390/app10134523
https://doi.org/10.1016/j.neucom.2021.08.159
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the number of classes in the new target application [28]. The 

model aims to use Transfer Learning using VGG16 for Image 

Classification of Brain MRIs and Chest X-rays. The 

top/output layer of the VGG16 is removed to add various other 

layers about the requirements of classifying the medical 

images. 

[ vgg = VGG16(input_shape = [224, 224, 3], weights 

= "imagenet", include_top=False) ]  

Keras was used as a Python interface for neural networks. 

Scikit-Learn (sklearn) for data library for predictive data 

analysis. NumPy (nmp) for support towards multidimensional 

arrays, mathematical functions, and numerical computing. 

 
Figure 1. An approach used to create a model for image classification of Brain MRIs and Chest X-rays to aid Health Care Providers in disease 

diagnosis.

TensorFlow (tsf) for creating and deploying ML models and 

interacting with the OS. OpenCV (cv2) for computer Vision 

and ML. Matplotlib for creating Visualizations in Python and 

tqdm for displays iteration based as progress bars. VGG16  

has a uniform architecture and it has been pre-trained on the 

ImageNet dataset with millions of images and thus can 

effectively be used for Transfer Learning. The VGG16 model 

is a deep-layer model with 16 weight layers. It contains the 

following layers [29]: 13 convolution layers, 2 fully connected 

layers, 1 softmax classifier, which is further broken down into, 

Layer 1,2: Convolutional layers, Filter Size: 3x3, Image Size 

is changed into 224x224x64. Output passed through, mac 

pooling layer (stride:2), layer 3-4 convolution layers, 124 

kernel filters (3x3), followed by a max pooling layer 

(stride:1), layers 8-13 2 sets of convoluted layers (kernel size 

3x3), 512 kernel filters each, followed by a max pooling layer 

(stride:1), layer 14-15 fully hidden layers (4096 units) and 

layer 16 softmax output layer (1000 units). This architecture 

was introduced by Karen Simonyan and Andrew Zisserman 

[30]. To enhance the performance of our machine learning 

model via Transfer Learning, we undertook a systematic 

approach involving the removal of existing output layers and 

the integration of supplementary layers. This adjustment was 

primarily targeted toward reducing the risk of overfitting, 

thereby enhancing the model's generalization capabilities. 

Concurrently, this modification was designed to maximize 

both training and validation accuracies, ensuring that the 

model maintains high performance even when confronted 

with novel data inputs. The layers along with the rationale 

behind their use include:

 

Layer type Output shape Param # 

input_1 (InputLayer) [(None, 224, 224, 3)] 0 

https://doi.org/10.1109/tmi.2016.2535302
https://www.researchgate.net/publication/337105858_Transfer_learning_using_VGG-16_with_Deep_Convolutional_Neural_Network_for_Classifying_Images
https://arxiv.org/abs/1409.1556


Journal of Knowledge Learning and Science Technology                                                                                 https://jklst.org/index.php/home   

 

205 

block1_conv1 (Conv2D) [(None, 224, 224, 64)] 1792 

block1_conv2 (Conv2D) [(None, 224, 224, 64)] 36928 

block1_pool (MaxPooling2D) [(None, 112, 112, 64)] 0 

block2_conv1 (Conv2D) [(None, 112, 112, 128)] 73856 

block2_conv2 (Conv2D) [(None, 112, 112, 128)] 147584 

block2_pool (MaxPooling2D) [(None, 56, 56, 128)] 0 

block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 

block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 

block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 

block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 

 block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 

block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 

block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 

block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 

block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 

 block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 

block5_conv3 (Conv2D)  (None, 14, 14, 512) 2359808 

 block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 

 flatten (Flatten) (None, 25088) 0 

dense (Dense) (None, 1024) 25691136 

dropout (Dropout)  (None, 1024) 0 

dense_1 (Dense) (None, 512) 524800 

dense_2 (Dense) (None, 2) 1026 

Table 3.  A total of 40931650 (156.14 MB) parameters were tested including 26216962 (100.01 MB) trainable parameters and 14714688 

(56.13 MB) non-trainable parameters.

 

(a) Dense Layers: To add fully connected layers with either 

512/1024 neurons. (b) Dropout Layer: To drop random 

neurons by a decided fraction into each training cycle to help 

prevent overfitting. (c) Flatten Layer: To convert images to 

1D Feature Vectors. 

[ def lw(bottom_model, num_classes):  

top_model=bottom_model.output  

top_model=Flatten()(top_model)  

top_model=Dense(1024, 

activation='relu')(top_model)top_model=Dropout(0.5)(top

_model)  

top_model=Dense(512, 

activation='relu')(top_model) 

top_model=Dense(num_classes,  
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activation='softmax')(top_model)  

return top_model ]  

2.4. Image classification 

Image classification involves assigning different labels to 

our datasets [31]. In our case, the classes and labels in the 

MRI dataset include: Glioma Tumor (G), Meningioma 

Tumor (M), Pituitary Tumor (P), No Tumor (NT). The 

classes and labels in the Chest X-ray dataset include 

Pneumonia (P) and Normal (N).  

2.4.1. Preprocessing 

Preparing raw images from our dataset for subsequent 

analysis by enhancing their quality using various 

techniques is known as Image Preprocessing [32, 33]. The 

method of preprocessing we used is Label Encoding. It 

converts categorical columns to numerical ones so that 

they can be fitted in ML models [34] 

[lbrain = preprocessing.LabelEncoder()  

Y1_train = lbrain.fit_transform(Y1_train)  

Y1_test = lbrain.fit_transform(Y1_test)  

Y1_train = tsf.keras.utils.to_categorical(Y1_train, 

num_classes=4)  

Y1_test = tsf.keras.utils.to_categorical(Y1_test, 

num_classes=4)  

Y1_train = nmp.array(Y1_train)  

X1_train = nmp.array(X1_train)  

Y1_test = nmp.array(Y1_test)  

X1_test = nmp.array(X1_test)]  

2.4.2. Testing and training data 

The training dataset includes images that are used to train 

the model and help the model learn to predict the labels. 

The test dataset involves images whose labels are 

predicted by the model as a way to test the model and 

answer the research question [35]. 

The test train split involves dividing our data into two 

datasets for training and testing purposes. We used a 

randomized or cross-validated test train split which is the 

most widely used method [36]. This involves dividing our 

data into two arrays, in our case ‘X’ and ‘Y’, which will 

store the image data and the corresponding labels 

respectively. After creating the X and Y arrays we split our 

dataset into X_train (containing images from the training 

dataset), Y_train (containing labels from the training 

dataset), X_test (containing images from the test dataset), 

and Y_test (containing labels from the test dataset). We also 

specify test_size (ratio of test dataset to train dataset) and 

random_state [37]. 

This involves fitting the training and testing data into the 

model we prepared. In this, we specify our X and Y train 

sets, and our X and Y test sets as our validation data. The 

validation data is the data that can give an estimate of the 

model’s skills by testing it and comparing the predicted 

labels with the actual labels [38]. We also specify the number 

of epochs which means the number of times the learning 

algorithm will work through the entire training dataset [39]. 

We used MatplotLib which is a Python plotting library to 

create a graph of our model [40]. This gives us a visual 

depiction of our Validation & Training Accuracy and 

Validation & Training Loss and helps us to better understand 

the performance of the model. 

2.5. Transfer learning and data 

augmentation 

We observed slight overfitting (suggested by higher training 

accuracy but lower validation accuracy and higher 

validation loss) and potential bias in the model due to 

reduced ability to learn newer features from unseen data 

[41]. Potential solutions to these limitations include 1) batch 

normalization layers to help stabilize and increase the speed 

of the training process (L2 regularization). This helps in 

making the weight distribution based on the coefficients and 

prevents any one feature from being dominant, 2) data 

augmentation to enhance the quantity and quality of the 

training data for use in deep learning training [42]. In the 

task of image classification, popular data augmentation 

techniques include flipping, cropping, rotating, distortion, 

color distortions, blurring, and many more.  

Augmented-generated images retain their original label and 

are used as additional training data. Data augmentation 

targets issues that come along with a training dataset that is 

too small, which leads to overfitting [43].  

Improving a deep CNN from scratch is an extremely hectic 

and impractical task because of its rigorous requirements of 

large amounts of labeled training data and high expertise to 

ensure proper convergence. A good alternative is to fine-tune 

a CNN that has already been pre-trained using a large set of 

labeled natural images [44]. Consider VGG-16 with L layers 

where the last 3 layers are fully connected layers. Also, let αl 

https://doi.org/10.1007/978-3-030-32606-7_3
https://doi.org/10.1007/s40009-023-01372-2
https://doi.org/10.60087/jklst.v3.n4.p169
https://doi.org/10.1016/j.bios.2016.12.035
https://doi.org/10.18653/v1/2021.emnlp-main.368
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https://matplotlib.org/
https://doi.org/10.3390/technologies11020040
https://ieeexplore.ieee.org/abstract/document/7533048
https://arxiv.org/abs/1712.04621
https://doi.org/10.1007/s12008-023-01327-3


Journal of Knowledge Learning and Science Technology                                                                                 https://jklst.org/index.php/home   

 

207 

denote the learning rate of the l^th layer in the network. We 

can fine-tune only the last (new) layer of the network by 

setting αl = 0 for l 6= L. This level of fine-tuning corresponds 

to training a linear classifier with the features generated in 

layer L−1. Likewise, the last 2 layers of the network can be 

fine-tuned by setting αl = 0 for l 6= L, L − 1. This level of fine-

tuning corresponds to training an artificial neural network 

with 1 hidden layer, which can be viewed as training a 

nonlinear classifier using the features generated in layer 

L−2. Similarly, fine-tuning layers L, L−1, and L − 2 is 

essentially equivalent to training an artificial neural network 

with 2 hidden layers. Including the previous convolution 

layers in the update process further adapts the pre-trained 

CNN to the application at hand but may require more 

labeled training data to avoid overfitting [45]. 

3. Results 

The brain MRI dataset had four classes in total, namely: 

Glioma (G), Meningioma (M), Pituitary (P) and No Tumor 

(NT). We trained and tested the model on a total of 1,311 

images. Admittedly due to the smaller size of the dataset and 

higher number of classes, we got mixed results. The final 

epoch results suggest slight overfitting which can be resolved 

by tweaking the dropout layer values, adding an L2 

regularization, and testing with larger datasets as shown in 

Figure 1 and Table 4.

 

Figure 1. Training and Validation Accuracy Graphs for Brain MRI Image Classification. 

Epoch round →     Initial      Final  

Validation accuracy  0.8821 0.8707 

Training accuracy  0.8998 0.9103 

Validation loss  2.2090 2.9372 

Training loss 1.4086 1.6084 

Table 4. Training accuracy of the model.

The chest X-ray dataset had a total of 5,863 images and two 

labels, listed as: Pneumonia (P) and Normal (N). After fitting 

the datasets into the model we ran three epochs, that is, we 

went through the algorithm to train and test the model thrice 

and the results for each epoch are described in Table 5. In the 

results described in Figure 2, loss refers to a measure of the 

difference between actual labels and predicted labels. Due to 

a large dataset on few labels, the model performed very well 

on the training accuracy and even better on the validation 

accuracy with a marginal difference.

https://doi.org/10.1109/TMI.2016.2535302
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Figure 2. Performance chest X-ray image classification as an Accuracy-Epoch graph.  

Epoch round →      1st       2nd       3rd  

Validation accuracy  96.92% 96.06% 95.55% 

Training accuracy  95.51% 95.44% 95.72% 

Validation loss 0.1377 0.2517 0.1527 

Training loss 0.2772 0.1937 0.1792 

Table 5. Training accuracy of the model.

4. Discussion 

Conventionally, data mining and machine learning algorithms 

are engineered to address problems in isolation. These 

algorithms are employed to train the model in separation on a 

specific feature space and the same distribution. Depending 

on the business case, a model is trained by applying a machine 

learning algorithm for a specific task. A widespread 

assumption in the field of machine learning is that training 

data and test data must have identical feature spaces with the 

underlying distribution. On the contrary, In the real world, this 

assumption may not hold and thus models need to be rebuilt 

from scratch if features and distribution change. It is an 

arduous process to collect related training data and rebuild the 

models. In such cases, Transferring Knowledge or transfer 

learning from disparate domains would be desirable. Transfer 

learning is a method of reusing a pre-trained model’s 

knowledge for another task. Transfer learning can be used for 

classification, regression, and clustering problems. We have 

used one of the pre-trained models – VGG - 16 with Deep 

Convolutional Neural Network to classify images [46]. 

VGG-16 is an object detection and classification algorithm 

that can classify more than 1000 images of Peculiar categories 

with more than 90% accuracy. It is a type of CNN that is one 

of the best computer vision models to date due to the 

advantages and satisfaction it gives to its users as it is 

renowned for its simplicity and effectiveness, as well as its 

ability to achieve strong performance on various computer 

vision tasks, including image classification and object 

recognition. The model’s architecture features a stack of 

convolutional layers followed by max-pooling layers, with 

https://doi.org/10.60087/jklst.vol3.n3.p.165-192
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progressively increasing depth. This design enables the model 

to learn intricate hierarchical representations of visual 

features, leading to robust and accurate predictions. It also 

comes with several challenges that need to be tackled. For 

instance, 1) It is very slow to train (the original VGG model 

was trained on  the Nvidia Titan GPU for 2-3 weeks). 2) The 

size of VGG-16 trained imageNet weights is 528 MB. So, it 

takes quite a lot of disk space and bandwidth which makes it 

inefficient. 3) 138 million parameters lead to exploding 

gradients problem [47]. Gratefully, there are a variety of ways 

to enhance the performance of the VGG-16 model during 

training and validation. Apply data augmentation techniques 

to increase dataset diversity and reduce overfitting. It's also 

crucial to ensure the dataset's cleanliness, correct labeling, and 

appropriate division into training, validation, and test subsets. 

Experiment with different learning rates and optimizers and 

consider the use of learning rate schedulers if necessary. 

Employ regularization methods like dropout and L2 

regularization to tackle overfitting issues. Check the training 

process carefully, implement early stopping, and adjust the 

batch size as needed. Lastly, make sure the hardware 

resources are utilized effectively, and explore ensemble 

methods to potentially enhance model performance [48]. 

These strategies will surely help to overcome the low accuracy 

challenge that comes with the VGG-16 model. Further 

advancements include resnets that can be introduced to 

prevent exploding gradients problem that occurs in this model. 

The integration of AI with augmented reality and 

advancements in real-time image classification are opening 

new avenues for user engagement and accessibility. AutoML 

platforms are democratizing image classification, making it 

accessible to non-experts, and fostering innovation across 

various sectors. Looking forward, the field of image 

classification is poised for further breakthroughs, with 

technologies like generative adversarial networks (GANs) and 

advances in unsupervised learning opening new possibilities 

for even more sophisticated image analysis. However, as these 

technologies evolve, so do the ethical challenges they present. 

The journey ahead involves not only technological innovation 

but also the cultivation of a robust ethical framework that 

governs the use of AI using a system based approach [49]. The 

journey of image classification is an ongoing adventure 

marked by giant technological strides that have redefined our 

interaction with the digital world. As we look towards the 

future, the importance of ethical AI development cannot be 

overstressed. Balancing innovation with responsibility will be 

key to unlocking the full potential of image classification, 

ensuring it contributes positively to society and industry.

 

Figure 3. Mapping out the various steps involved in the model used in professional settings by HCPs

5. Conclusion 

Here, we employ a transfer-learning system architecture to 

classify medical images of Brain MRI scans and Chest X-

rays to detect various diseases such as Glioma, Meningioma 

and Pituitary Tumor in MRIs and Pneumonia in X-rays 

along with identification of normal scans as well. The 

VGG16 is a model with 16 convolutional layers with an 

accuracy of almost 92.7%, as it has been trained on the 

ImageNet dataset. The dataset used in this project has been 

relatively smaller in size with restrictions to only certain 

kinds of diseases. Using a larger amount of images with 

even more classes corresponding to numerous diseases 

would help by increasing variations in the scans and assist 

the model in recognizing more and more diseases. Though 

improvements to machine learning models are continuously 

made, using pre-trained models along with added 

specifications to tailor them to the highest achievable 

efficiency concerning the thrust of a project is a novel 

method to improve accuracy and increase convenience 

when it comes to analyzing and classifying images. With 

the help of certain technical changes, the model can be 

further trained to enhance performance and can be deployed 

https://doi.org/10.1007/978-981-16-8774-7_37
https://doi.org/10.60087/jklst.v3.n4.p108
https://doi.org/10.60087/jklst.v3.n4.p133
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for HCPs to assist them in identifying abnormal scans and 

diagnosing patients. ML models in the healthcare industry, 

though still in the early stages, have proved to be assets. 

From disease identification to diagnosis, it could resolve the 

problem of inaccurate diagnoses due to human errors and 

improve the quality of healthcare by making it possible to 

have timely and correct treatments available to patients. 

These models will largely reduce the burden on medical 

practitioners and assist them with quick identification of 

any abnormalities present. ML models coupled with human 

intelligence could pave the way for drastic improvements in 

healthcare systems all over the world. In conclusion, the 

application of transfer learning in medical imaging, as 

demonstrated in various studies, underscores its 

transformative potential in enhancing diagnostic accuracy 

and efficiency, similar to advancements seen in pathogen 

detection and glucose sensing technologies, thereby paving 

the way for significant improvements in healthcare delivery 

[50] [51] [52]. 
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