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Abstract 

Skin diseases are among the most common diseases that affect millions of lives per year, yet diagnosing these has several 

complexities even for trained dermatologists due to overlapping symptoms and features in several diseases. A myriad of deep 

learning models have been proposed as a solution for diagnosing but a clinically useful model with high accuracy multi disease 

classification and lower computational complexity is still unavailable. This study focuses on comparing different image pre-

processing techniques, transfer learning models and ensemble learning techniques to build a computationally cheap model for 8-

class identification of skin diseases. A two path model with EfficientNet and MobileNetV2 transfer learning models as base 

feature extractors and a final model that stacks the two model results and classifies the images into one of the eight classes is 

used. The model is trained and tested on ISIC-2019 dataset for 8 class image classification that involves the three types of skin 

cancers as well. The dataset has an extreme class imbalance problem which leads to favored prediction of the classes with more 

image, for this first we run simple image augmentation. Secondly, two distinctly processed images are created from each initial 

image. The two path model takes the two images, gives each to a base model and combines the two outputs, enabling the classifier 

to consider different features that become prominent due to dissimilar preprocessing techniques. The model is tested with new 

images on multiple standard metrics to get a final overview of its performance, it gives a diagnosing accuracy of 70% which is 
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close to some state of the art models that consume higher computational power. The classification results imply that by further 

improving the data gathering and preprocessing techniques along with exploring other base transfer learning models the results 

of the final model can be reliable while maintaining a low computational requirement, making the diagnoses accessible. This 

also highlights that such two path algorithms that employ simpler models could be useful for multi class classification tasks 

where differently processed images might be required to extract features of distinct diseases. 
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1. Introduction

Skin disease impacts millions of individuals being one of the 

most common health issues globally with skin cancer being 

most severe. Skin cancer is a form of cancer for which around 

1.5 million new cases were diagnosed in 2020 including about 

330,000 instances of Melanoma, a more severe type and 

continuing to increase even today. Among these cases roughly 

57,000 are fatal [1][2]. Along with Melanoma there are Non 

Melanoma skin cancers like Basal Cell Carcinoma (BCC) and 

Squamous Cell Carcinoma (SCC) are more common in 

countries like the US, where 3.6 million BCC cases and 1.8 

million SCC cases are diagnosed annually. These cases occur 

in about 3.3 million people combined as some individuals 

have more than one lesion treatment per year [3]. While non 

melanoma skin cancers can be treated effectively and are 

typically non life threatening they may cause discomfort and 

anxiety due to side effects such as social limitations and 

physical complications that can diminish overall quality of life 

[4]. Moreover the financial burden associated with treating 

and monitoring these conditions is substantial for both patients 

and the economy at large. The average annual cost per person 

for treating melanoma skin cancer was $1,200, in 2018 while 

melanoma treatment costs reached $2,400 [5]. The yearly 

medical expenses for managing skin cancer in the United 

States amount to $8.9 billion [6]. Additionally, timely 

identification of skin cancer plays a role in lessening the 

severity and mortality rates of these conditions, especially 

melanoma, which boasts a 99 percent survival rate over a five 

year period [3]. 

Dermoscopy is a non-invasive imaging technique that allows 

dermatologists to closely examine skin lesions with enhanced 

magnification [7]. This method provides a detailed view that 

goes beyond what can be seen with the naked eye which 

makes it essential for early diagnosis of skin conditions, as 

accurate evaluation of the disease by visual inspection only 

requires extensive training and experience. There have been 

numerous microfluidic based approaches used for pathogen 

detection [8] however, the visual similarity between different 

types of skin cancer lesions often complicates the diagnostic 

process, even for highly experienced medical practitioners [9].  

Advancement in image preprocessing and machine learning 

have revolutionized the diagnosis and treatment of skin 

diseases, leading to the development of faster and more 

precise diagnostic methods. In medical image analysis, deep 

learning (DL) algorithms are now the preferred tools for visual 

based disease classification. The efficiency and accuracy with 

which these algorithms analyze large datasets and extract 

relevant features from image data are superior to traditional 

machine learning (ML) algorithms [10]. Moreover, traditional 

ML algorithms such as Support Vector Machine (SVM), K 

Nearest Neighbor (KNN), Decision Tree,  require manually 

extracted features [11] which aren’t generally ideal for 

medical image diagnosis as new/complex variations of 

diseases are diagnosed from time to time. The Convolutional 

Neural Network (CNN), in particular, is a powerful deep 

learning architecture used for image processing and 

classification. Its ability to learn and extract useful 

characteristics from raw image data automatically without 

human supervision makes it a default option for these tasks 

[12]. Modifications to the CNN architecture have given rise to 

a variety of CNN-based models such as Inception-v4 [13], 

VGGNet [14], ResNeXt [15], MobileNetV2 [16], DenseNet 

[17], EfficientNet [18] with each model possessing unique 

advantages over the other depending on variable requirements 

and computational costs. In combination with other deep 

learning algorithms such as LSTMs [19] [ 20], vision 

transformers [21] or autoencoders, the CNNs’ performance on 

medical image classification tasks is further enhanced. Several 

research studies have employed CNNs in dermatological 

image classification, achieving notable model performance 

[22].  

Research in 2017, trained a deep CNN, utilizing the Inception 

v3 CNN architecture, on a dataset containing 129,450 skin 

disease images. A tree-structure taxonomy of the disease 

class, organized based on the visual and clinical similarities of 

https://www.cancer.gov/types/skin
https://jamanetwork.com/journals/jamadermatology/fullarticle/2790344
https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/#general
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951022/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001479/#:~:text=As%20for%20melanoma%2C%20the%20average,18%20(p%20%3D%200.783).
https://www.cdc.gov/nccdphp/priorities/skin-cancer.html#:~:text=At%20a%20glance,skin%20cancer%20is%20$8.9%20billion.
https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/#general
https://www.sciencedirect.com/science/article/abs/pii/S1470204502006794
https://doi.org/10.1016/j.bios.2016.12.035
https://doi.org/10.1002/smll.202200201
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0276-2
https://link.springer.com/article/10.1007/s11042-022-14305-w
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00444-8#ref-CR76
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1409.1556
https://ieeexplore.ieee.org/document/8100117
https://doi.org/10.11591/ijeecs.v16.i1.pp389-394
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https://www.sciencedirect.com/science/article/pii/S2352914820305621#:~:text=The%20structure%20of%20this%20architecture,is%20used%20as%20a%20classifier
https://www.ijeat.org/wp-content/uploads/papers/v8i6/F8602088619.pdf
https://arxiv.org/abs/2103.15808
https://www.ijsr.net/ar-chive/v13i6/SR24619062609.pdf
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the disease, was introduced. The model achieved higher 

accuracy than expert dermatologists for a broader 9 class 

classification [23]. In 2018, The diagnostic accuracy of a deep 

learning model in melanoma detection was tested via a 

comparison of its performance with a large group of 58 

dermatologists by Haenssle et al [24]. The CNN-model 

achieved a greater ROC-AUC of  86% using only 

dermoscopic images, compared to 82% mean ROC-AUC of 

the dermatologists, who used both dermoscopic and clinical 

information. Another research proposed a model that achieved 

a 92.90% accuracy by using a combination of CNNs and a 

one-versus-all approach. In this approach, seven different 

models are trained, one for each of the seven skin diseases that 

the researchers aimed to identify. Each model is trained to 

differentiate a particular disease from the other six diseases 

combined. This means that each model essentially learns a 

specific disease's features and classifies an image on a binary 

basis i.e. whether it contains those features or not. Finally, the 

image is assigned the disease class predicted by the model 

with the highest true output [25]. In this research we used two 

Transfer Learning models as feature extractors and 

concatenated the two outputs to pass through a final fully 

connected classification layer. By utilizing the feature 

extraction knowledge acquired from training on the state-of-

the-art ImageNet dataset, models such as MobileNet and 

Efficient Net demonstrate good performance in classifying 

dermatological images after fine tuning on the ISIC-2019 

dataset for a 8 class skin disease classification. Additionally, 

combining predictions from multiple models through 

ensembling techniques enhances accuracy, which highlights 

adaptability of deep learning in managing intricate 

classification challenges. Instead of creating a single 

preprocessed image, the two paths of the ensembling model 

i.e. the MobileNet path and the EfficientNet path get two 

differently processed images one where the lesion area is 

segmented with the help of pixel values of different color 

intensities and one where only filtration and color inversion is 

applied. This dual path system helps to use a combination of 

preprocessing techniques which help in distinct feature 

extraction that are highlighted through dissimilar data 

processing methods. 

2. Discussion 

2.1. Datasets for Dermatological Diseases  

The datasets considered for this research included the 

following. 

2.2.1. Dermnet 

Freely available large dataset of over 23,000 images with 23 

super-classes [26]. It is maintained by a diverse group of 

dermatologists and images are from various patients and 

locations. The major disadvantages associated with it are that 

unlike ISIC challenge datasets, it lacks a separate test dataset 

and it might lead to inconsistent results when researchers split 

the dataset by themselves [27]. 

2.2.2. PH2 

Publicly available dataset made in collaboration with 

University of Porto, University of London and Dermatology 

Service of Hospital Pedro Hispano. It is a detailed high-quality 

annotated dataset which contains manual segmentation of skin 

lesions, clinical diagnosis and identification of features on the 

basis of asymmetry, colors, pigment network, dots, streaks, 

and regression areas. The disadvantage with it is that it only 

includes 200 images and addition of more images require 

manual annotation effort which might be time and effort 

intensive [28]. 

2.2.3. HAM 10000 

10,015 dermatoscopic images collected over a period of 20 

years by the Department of Dermatology at the Medical 

University of Vienna, Austria and skin cancer practice of Cliff 

Rosendahl in Queensland, Australia. The issue with this 

dataset lies in complexity and sophisticated algorithms 

required to fully exploit its full capabilities [29]. 

2.2.4. ISIC 2019 Challenge Dataset 

Largest collection of dermatoscopic images available with 

25,331 images classified into eight different classes - 

Melanoma (MEL), Dermatofibroma (DF), Melanocytic 

Nevus (NV), Basal Cell Carcinoma (BCC), Benign Keratosis 

(BKL), Vascular Lesion (VASC), Actinic Keratosis (AK), 

Squamous Cell Carcinoma (SCC). It provides a good 

benchmark and industry standard for evaluating different 

models [29, 30].  

2.2.5. Selection Process 

A common issue prevalent over almost every dataset 

including the ISIC 2019 and ISIC 2020 was class imbalance. 

Class imbalance refers to unequal distribution of data into 

different classes which might result in overfitting or 

underfitting among models. For example: 6705 images for 

Melanocytic nevi (NV) compared to only 115 images of 

Dermatofibroma (DF) in the HAM10000 dataset [29]; or 

12,000 images for Melanocytic Nevus (NV) compared to only 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382232/
https://pubmed.ncbi.nlm.nih.gov/29846502/
https://iecscience.org/uploads/jpapers/202003/9R3kuy6yw4mrVbHH3N2POQ5lC8UqZk17XYJQzOuc.pdf
https://www.researchgate.net/figure/Overview-of-DermNet-Dataset-and-Distribution-of-Classes_tbl1_340459182
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935891/
https://pubmed.ncbi.nlm.nih.gov/24110966/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091241/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091241/
https://doi.org/10.1002/adhm.202202362
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091241/
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239 images for Dermatofibroma (DF) in ISIC 2019 dataset. 

ISIC 2019 challenge dataset was chosen as the primary dataset 

instead of the latest ISIC 2020 challenge dataset. This was 

because the ISIC 2020 dataset consisted only of 7 seven 

classes instead of the 8 classes of ISIC 2019 and the 2020 

dataset focuses primarily on benign and melanoma lesion 

types which would have limited the scope of this research 

[31]. Moreover, ISIC 2019 was also a much explored and 

widely used dataset which provided us with several additional 

resources to base our research on [32]. Instead of using the 

dataset directly, a different approach was taken by first 

segmenting the dataset into classes and then improving upon 

it by using oversampling and undersampling according to the 

class size and then applying additional augmentation 

techniques in the classes where the sample quantity was lower 

which would prevent  the issue of the model being trained with 

an extra bias for the larger classes. A robust dataset is required 

for creating an optimal model. So image augmentation was 

utilized for smaller classes such as AK, DF, VASC, and SCC 

and reduced the images of larger classes such as NV to match 

other classes [33]. This would provide a more balanced and 

accurate result for our model. More of which is discussed in 

the later part of this methodology section. 

2.2. Image Augmentation and Pre-

Processing Techniques  

Adding to the highly selective and quintessential process of 

dataset selection, the size of the training dataset also ends up 

being a determining factor which tends to cause an impact on 

the model’s performance [34]. To counter this problem, the 

concept of Image Augmentation has been introduced within 

the steps of Image Pre-Processing, which literally means “to 

add to images”. 

2.2.1. Taxonomy 

Augmentation can broadly be classified into the following 

kinds [35]:- (1) Model Free Augmentation: this type of Image 

Augmentation does not involve the use of a ML/DL model. It 

includes the use of various Single Image (such as geometrical 

and intensity transformation, color image processing) and 

multiple image methods of which the ones relevant to the 

scope of this paper have been highlighted moving forward 

[36] :- i) Geometrical Transformation: being one of the 

simplest ones to execute, this technique still proves to be one 

of the most effective ones despite its toll on the training 

process of the model [37]. It includes methods such as 

translation, rotation, scaling and addition of extra noise. ii) 

Color Image Processing: most common color image formats 

(like the RGB and SRGB format) are made up of the 

combinations of three colors and these colors can be 

manipulated and tweaked by some randomized values thus 

forming new augmented images. It includes the use of 

methods such as color shifting, hue shifting, color inversion 

and saturation shifting. iii) Intensity Transformation: intensity 

Transformation techniques such as histogram equalization 

have also been growing in popularity because of their nature 

to modify the given image one pixel at a time. This results in 

an image with varied intensity values which also serves as a 

viable alternative for image augmentation. 

 

Despite the core advantages of using this specific approach for 

image augmentation being its simplicity, performance and 

reliability, one common disadvantage faced due to the use of 

Model Free Augmentation on a whole is the lack of originality 

in the newly generated images. This problem is solved by the 

use of more complex methods of Model Augmentation which 

bring with themselves their own set of pros and cons. 

2.2.2. Model Augmentation 

This type of Image Augmentation method involves the use of 

ML/DL models. Though it is more complicated and requires 

more resources than other Model Free Augmentation 

methods, it yields better augmented images with higher 

originality which is beneficial for the model in most cases 

[38]. The viable and most common approaches to Model 

Augmentation relevant to the scope of this paper have been 

discussed moving forward: i) Generative Adversarial 

Networks (GANs): the Generative Adversarial Networks 

(GANs) are composed of a generator and a discriminator in 

which the sole purpose of the generator is to produce new 

images and for the discriminator, to classify images and 

discard the ones that seem “fake”. When trained for a 

sufficient number of “epochs”, the network yields results 

which hold great research value for medical image 

augmentation [39]. ii) Neural Style Transfer (NST): the 

Neural Style Transfer (NST) technique utilizes a deep learning 

model to extract the required features from the image and then 

simply adding them on another background [40]. This 

technique is also used for image augmentation which like 

other methods yields images that have better originality than 

other Model Free Augmentation Methods. 

Although Model Augmentation approaches provide better 

originality of augmented images by the use of Deep Learning 

Networks, the problem of huge required resources ends up 

limiting their use in most studies. Even though they yield 

images with better originality, they need to be pre-trained and 

fine tuned in a way particular to an individual research which 

https://challenge2020.isic-archive.com/
https://www.sciencedirect.com/science/article/pii/S1361841521003509
https://doi.org/10.60087/jklst.v3.n4.p78
https://doi.org/10.1016/j.bios.2017.03.054
https://www.sciencedirect.com/science/article/pii/S0031320323000481#sec0002
https://doi.org/10.1039/c6nr06417e
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
https://www.sciencedirect.com/science/article/pii/S2590005622000911#sec7
https://www.sciencedirect.com/science/article/abs/pii/S0010482522001743?via=ihub
https://iopscience.iop.org/article/10.1088/1742-6596/1651/1/012156
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makes the process time taking as well as complex since 

without a high accuracy, even simpler approaches out-perform 

them many a times [41]. A comparatively newer approach is 

a Optimizing Policy Based Augmentation, which utilizes 

reinforcement learning and ML/DL neural networks to 

determine the best strategy for enhancing images [35].  

2.2.2. Implementation 

Out of the various methods and techniques discussed earlier, 

the choice of the correct combinations that could help us 

maximize the productivity of the model and the research was 

particularly challenging. Considering the limited amount of 

resources that were available to implement them, some of the 

complex methodologies including augmentation and 

preprocessing techniques including the use of ML/DL models 

stood ruled out. In summary, the techniques employed for 

Image Augmentation have been summarized in Table 1. 

  

Technique Description Purpose 

Translation Shift the image along the x and y axis 

randomly. 

Helps the model learn the lesion pattern found at different 

positions within the image. 

Scaling Resizes and crops the image either by 

zooming in or out by a randomized value. 

Helps the model learn the lesion pattern found at different 

sizes within the image 

Rotation Rotates the image by a randomized angle. Helps the model learn the lesion pattern variations found in 

the image by random angles. 

Flipping Creates a mirror image of the original image 

by flipping horizontally, vertically or both. 

Helps the model learn the lesion pattern found at different 

positions within the image. 

Noise Addition Adds a randomized value of noise in the 

image using gaussian noise. 

Helps model learn lesion patterns even under noise 

conditions possible in the image due to various factors. 

 

Table 1. Image Augmentation techniques used in previous research.

2.2.3. Image Pre-Processing 

Preprocessing the acquired image data has shown to 

significantly improve the accuracy of any image classification 

model [42]. This involves some standard methods like 

resizing the image to standard dimensions, normalization of 

pixel values i.e. bringing all the pixel values between 0-1 

which were earlier between 0-255. Then removal of noise, 

faint hair and unnecessary texturing from the image are also 

necessary. In terms of dermatological datasets, the images also 

involve background skin, hair growth over the lesion, etc. 

which can cause hindrance in image segmentation. Image 

preprocessing techniques using filters over the images offer a 

solution to this. For removal of hair from the skin segment 

gaussian filter, median filters have shown effective results 

[43][44]. Both Gaussian and median filters were tested, the 

median filter was able to retain some texture of the Region of 

Interest while removing the hair properly has lower 

complexity and is thus employed. To improve the contrast and 

highlighting the anatomical features in biomedical data, 

Histogram equalization algorithm is applied over the image to 

which helps in enhancing the contrast of the image by first 

plotting a histogram of pixel intensities and then applying 

cumulative distribution function on the values. This results in 

an image with higher contrast and reduced noise. Research 

explored different Histogram Equalisation variants to improve 

the Medical image classification with CNN and found that 

Contrast Limited Adaptive Histogram equalization (CLAHE) 

performed the best and improved contrast while retaining 

details of the original image [45][46]. Research enhanced 

images  for skin lesion classification using a CLAHE and got 

a classification rate of above 92% [47]. With the ISIC dataset, 

CLAHE with a clipLimit of 3.8 and a tile size of (6, 6) gave 

amazing results, improving contrast between the ROI and the 

background skin besides, it also helped in improving the 

segmentation results by preserving the edge information in the 

image. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707550/
https://www.sciencedirect.com/science/article/pii/S0031320323000481#sec0020
https://www.sciencedirect.com/science/article/pii/S2772442522000624
https://ieeexplore.ieee.org/document/8524554
https://www.irjmets.com/uploadedfiles/paper/issue_5_may_2023/39556/final/fin_irjmets1684687927.pdf
https://www.sciencedirect.com/science/article/pii/S1877050923014539
https://www.sciencedirect.com/science/article/pii/S1877050919321519/pdf?md5=0838915107444defdf223e3995a13216&pid=1-s2.0-S1877050919321519-main.pdf
https://pubmed.ncbi.nlm.nih.gov/26872778
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Techniques Description Purpose 

Resizing The images available in the datasets are of different sizes 

and resolutions which are converted into (224X224X3)  

The model needs a specified size output. 

Normalisation The pixel values are converted in the range of 0-1 Values between 0-1 make it easier for computer to 

read and process the data 

Noise and Hair 

removal 

A median filter with a kernel size 9 is used for this. Removal of hair from the lesion area is important 

for proper identification 

Histogram 

Equalization 

It increases the contrast based on different pixel 

intensities in the image. 

This improves highlighting lesion areas and edge 

detection for segmentation of Region of Interest 

Table 2. Image Pre-processing techniques used in previous research. 

2.3. Algorithm for image segmentation and 

feature extraction  

2.3.1. Image Segmentation 

The performance of any model directly depends upon the kind 

of data-fed to it.  An important aspect of using deep learning 

for medical image classification are the robust image 

segmentation models that have shown to improve the accuracy 

of medical diagnosis. Image segmentation can be defined as 

dividing an image into several disjointed areas according to 

the features like color, texture, shapes, etc. of the image region 

[48]. The study shows that classification of lung images after 

segmentation techniques improves model accuracy [49] which 

can also be seen in skin lesion classification [50]. Another 

research showed that in medical images, blurriness, 

segmentation showed a wide range of outcomes with 

improved accuracy [51]. 

Two segmentation methods were compared for skin lesions 

from the given images. (1) U-Net: in 2015, a CNN based 

model called U-net was introduced for Bio-medical image 

segmentation. This state-of-the-art model has been used and 

modified in several researches, involving skin lesion 

segmentation [50]. Research proposes a highly modified and 

advanced architecture for a U-net model to segment the region 

of interest from the background skin where the affected skin 

area was highlighted with 94% accuracy. Another Research 

shows the U-net model achieved a jaccard index of 0.80 with 

the ISIC dataset for segmenting and creating an image mask 

[52], besides this it also showed that a classification model 

trained using this segmented data gave more accurate results. 

We used a model based on U-net with 18 convolutions, 4 Max 

pooling with Relu activation function, divided into an 

contracting and expansive path and finally an output layer 

with sigmoid activation, which converts the input images into 

a segmented mask. The model was pretrained on a non-

medical dataset and then trained on the dermatological dataset 

PH2 which has lesion segmentation as its groundtruth, this 

improved the accuracy. Despite having a good accuracy, the 

model was highly complex and proved to be computationally 

costly. (2) Thresh Binary: a simpler way of segmentation 

thresh-binary was explored where the threshold value was set 

to be 127, the image segments with pixel value greater than 

that were segmented, treated as white while the background 

image was assigned the pixel value zero. Color and texture of 

the affected area are important for skin disease classification 

thus the segmented area i.e. the pixels with white value are 

restored from the original image, thus retaining all the 

essential features of the ROI and removing the background 

skin. Research shows that segmenting in the surrounding skin 

is a solution for skin image variability due to factors like skin 

tone, type, and lighting [53]. Segmenting and preserving the 

texture of the original lesion image also helped in feature 

extraction in the image like edge detection, spatial 

distribution, which are otherwise done by filters like gabor 

filters [44]. 

 

https://www.mdpi.com/2071-1050/13/3/1224
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720554/#CR12
https://doi.org/10.60087/jklst.v3.n4.p11
https://scholar.google.com/scholar_lookup?title=Proceedings+of+ICRIC+2019&author=V.+Anand&author=D.+Koundal&publication_year=2019&
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838042/
https://www.researchgate.net/publication/330564744_Automatic_Skin_Lesion_Segmentation_and_Melanoma_Detection_Transfer_Learning_approach_with_U-Net_and_DCNN-SVM
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392223/
https://www.irjmets.com/uploadedfiles/paper/issue_5_may_2023/39556/final/fin_irjmets1684687927.pdf
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Figure 1. Presents the proposed image preprocessing and segmentation techniques and their outputs with a test image. The image goes through 

several rounds of filtering, these filters extract useful features or patterns in order to distinguish between different regions. Due to filtration of 

image hairs are removed from image. After filtering, a segmentation mask is made. This mask separates the foreground (Skin Lesion) from the 

background (Surrounding tissue).The final output is an image that only contains segmented objects.

2.4. Modifying and Assembling Available 

Models  

A plethora of approaches have been explored in identification 

of skin lesions using unique, robust models and adopting a 

variety of techniques [54][55]. 

2.4.1. Transfer Learning 

https://doi.org/10.60087/jklst.vol3.n3.p.165-192
https://arxiv.org/pdf/2011.05627
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Transfer learning, initially proposed for dealing with lack of 

robust datasets has been seen as a fascinating approach in skin 

disease diagnosis, this involves loading a pre trained classifier 

trained on huge non-medical datasets like imagenets, and then 

using those as a base model and adding own classification 

layers, fine tuning the model and re-training on the dataset. 

These pre-trained models are able to extract features from the 

new dataset and also reduce computational complexity. 

Research took a transfer learning approach using the state of 

the art AlexNet model, modifying it with a softmax 

classification layer and fine tuning the final model for skin 

disease detection and were able to achieve an average 

accuracy of 95% with ISIC dataset [56]. Researchers explored 

different ResNet models for multiple common dermatological 

disease classification and were able to achieve a peak accuracy 

of 89.8% with the ResNet152 model [57]. Research used 

VGG16 and VGG19 models as transfer learning models and 

experimented with custom layers, optimizing, activation 

functions, etc. to identify skin cancer and were able to achieve 

a Sensitivity of 98.08% with the final proposed model with 

VGG19 [58].  

2.4.2. Two Path Algorithm 

Instead of a simple model a two path algorithm has become a 

topic of research recently. These models are initialized with 

two different paths taking separate inputs and having separate 

hidden layers(Convolutions, Pooling, etc.) Their output is 

combined during the flattening stage which is then given to 

Fully connected layers for classification [59]. For the purpose 

of skin disease classification this can be used to advantage, 

instead of giving a single input image to the model, the 

preprocessed image along with a segmented ROI image can 

be given with two different paths and a single classification 

result can be predicted with higher accuracy. 

2.4.3. Ensemble Deep Learning 

Ensemble learning is a powerful technique that is a machine 

learning paradigm which employs multiple machine learning 

algorithms to train several models [60]. Similarly, Ensemble 

deep learning is a technique to combine multiple deep learning 

algorithms to train different models [61]. This process of 

combining  is also known as stacking in which the new model 

learns how to best combine the predictions from multiple 

models [62]. The advantage of this is that it fuses the result 

from these models and utilizes voting schemes to achieve 

knowledge discovery and better predictive performance than 

any individual model can produce along 

[63]. This study uses ensemble learning to combine the 

strengths of state of the art models like - EfficientNetB2V2, 

MobileNetV2 and InceptionV3 to obtain a better result. Two 

models were required for a proposed two path approach so 

transfer learning using different models was inspected to find 

out which two models worked best together. This stacking 

allowed for an improved predictive performance, increased 

robustness to errors and uncertainties, and reduced overfitting 

by combining the results [64][65].  

2.4.4. Optimizers 

Optimizers are algorithms used to find the optimal set of 

parameters set for a model during the training process. 

Stochastic Gradient Descent (SGD) is a powerful optimization 

algorithm in which the actual gradient is replaced by an 

estimate calculated from a randomly selected subset of a data 

[66]. Another one of the optimizers is Adam Optimizer which 

is a popular optimization algorithm used in deep learning for 

training neural networks. While they share some similarities, 

they differ in their learning rate, momentum, and adaptability 

to different learning rates. The SGD is shown to give better 

generalization but does not handle bad hyperparameters like 

learning rate well. Research compares the two optimizers with 

VGG16 and VGG19 models for skin cancer diagnosis, the 

results showed that the Adam optimizer gave significantly 

better outputs while maintaining constant accuracy [58]. For 

the scope of the research, we used Adam optimizer as it is easy 

to implement, has an adaptive learning rate, faster 

convergence, and enhanced performance for our model 

[67][68]. 

2.4.5. Learning Rate 

Learning rate in deep learning models is a critical 

hyperparameter which governs the pace at which the model 

learns and updates its weights during the training process. 

The paper has used a low learning rate to ensure that it 

provides a stable solution, avoiding divergence, and improved 

generalization accuracy for our model [69]. 

2.5. Implemented Model Architecture  

Separate image preprocessing and segmentation and 

preprocessing methods were used to create two images from a 

given image and for the two path model to work the 

ImageDataGenerator() function is used to first load the raw 

image data along with the class label. Then each goes through 

both methods - preprocessing and segmentation, returning two 

images. Then the DataGenerator function finally yields 

Tensorspec objects inside a tuple where the preprocessed 

image with its corresponding segmentation mask is stored 

with their single label. This tuple is passed into the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529006/
https://openaccess.thecvf.com/content_CVPRW_2019/papers/ISIC/Mishra_Interpreting_Fine-Grained_Dermatological_Classification_by_Deep_Learning_CVPRW_2019_paper.pdf
https://arxiv.org/html/2404.01160v1#bib.bib6
https://arxiv.org/pdf/2008.09418
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785929/
https://www.sciencedirect.com/science/article/abs/pii/S095219762200269X
https://ieeexplore.ieee.org/document/9978482
https://link.springer.com/article/10.1007/s11704-019-8208-z
https://link.springer.com/chapter/10.1007/978-981-16-3246-4_9
https://www.researchgate.net/publication/378190299_An_Ensemble_of_Transfer_Learning_based_InceptionV3_and_VGG16_Models_for_Paddy_Leaf_Disease_Classification
https://ieeexplore.ieee.org/document/8260682
https://arxiv.org/html/2404.01160v1#bib.bib6
https://www.researchgate.net/publication/331422684_Improved_Adam_Optimizer_for_Deep_Neural_Networks
https://arxiv.org/abs/2306.00204
https://www.researchgate.net/publication/3907199_The_need_for_small_learning_rates_on_large_problems
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tf.data.Dataset API to return the final dataset which would 

provide two input images to the model.  

EfficientNetB2V2 and MobileNetV2 models with their pre-

trained weights for the ImageNet data were used as two base 

models for base feature extraction because both the models 

can work with very low computational resources and the input 

and output shapes of the original models are similar. Inception 

V3 despite giving promising results was discarded as the other 

models were more compatible. 

The EfficientNetV2S model has been used for the first path 

with simply preprocessed images. The model uses pointwise 

as well as depth wise convolutions with ReLu activation and 

batch normalization in an inverted bottleneck block 

architecture. The model comprises several such blocks with 

varying filters, kernel size according to the requirement. The 

last fully connected classification layers have been removed, 

then all the other layers of the base model are frozen so that 

the pre-trained weights are not optimized in the first cycles. A 

convolution layer with 3 by 3 kernel and 128 filters and a 2 by 

2  max pooling layer  is added to the base model output. This 

output is flattened so that it can be given to the ensemble 

model for classification by using fully connected dense layers 

[70]. 

MobileNetV2 is an efficient neural network that offers 

improved performance and scalability for mobile and 

embedded devices. It uses a novel layer called an inverted 

residual block; unlike traditional residual blocks, input and 

output channels are expanded in the inverted residual block 

while the intermediate layers have a smaller number of 

channels. It utilizes a linear activation function in the 

bottleneck layers of the inverted residual blocks. It also splits 

the convolution operation into depthwise convolution and a 

pointwise convolution which reduces the computational costs 

[71]. Moreover, this model is designed to be efficient in terms 

of both memory usage and computational costs.  

After flattening, both models return a one dimensional array 

output which is suitable for the fully connected classification 

layer. 

For the final ensembling model, the outputs from the two 

paths i.e. the MobileNetV2 and EfficientNetB2V2 are 

concatenated. A fully connected layer with 1024 output 

dimension using a softmax activation function is added to pass 

the concatenated features. A dropout layer with 0.5 rate is 

applied to reduce overfitting, before declaring the final output 

layer with softmax activation which gives output in form of a 

probability from the 8 given classes. A softmax activation 

function is typically used in the final classification layer; it 

converts the output into probabilities for different classes, thus 

yielding better results for classification models. 

This model is trained for 10 epochs with frozen layers which 

keep the weights of the base models same, only changing the 

weights of added layers, then for fine tuning the base models 

with our data, the layers of both the base models are unfrozen 

and the model is trained again for 10 epochs with a low 

learning rate so as to maintain the classification performance 

of the base models.  

2.6. Performance and Evaluation Indexes  

The classification performance of our model was evaluated by 

measuring the following metrics: Accuracy, Precision, Recall, 

F1 Score and Categorical Cross-Entropy Loss. The 

description of the used metrics are as follows. 

2.6.1. Accuracy 

Accuracy is defined as the proportion of correctly predicted 

samples and the total number of sample predictions.  

 

  [ Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
× 100 ] 

2.6.2. Precision 

This refers to the proportion of correctly predicted positive 

samples and the total number of positive sample predictions. 

 

 [ Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100 ] 

2.6.3. Recall 

The recall, also known as sensitivity or TPR, is defined as the 

proportion of correctly predicted positive samples out of the 

total number of actual positive samples. It measures the ability 

of the model to identify all relevant instances within the 

dataset.  

 

 [ Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100 ] 

 

https://www.sciencedirect.com/science/article/abs/pii/S0167865520304414
https://openaccess.thecvf.com/content_cvpr_2018/papers/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf
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Figure 2. Layer architecture of the final CNN model proposed, highlighting the two base transfer learning models which act as feature 

extractors for the same image preprocessed in two different ways as depicted. The two path architecture is displayed with the two models and 

additional convolutions, max pooling layer. In both the models dense layers are removed from the original model. As shown, the output from 

both the paths is flattened and concatenated which creates a new 2304 dimensional tensor. Two fully connected layers are used to identify 

complex patterns within extracted features as the first layer has 1024 units along with a dropout layer to reduce overfitting and the final output 

layer with softmax activation gives a prediction from the 8 classes

2.6.4. F1 Score 

The F1 Score refers to the weighted average of the precision 

and the recall, combined into a single value to understand the 

performance of the model better.   

 

 [ F1 Score = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
× 100 ] 

2.6.5. Categorical-Cross Entropy Loss 

This metric measures the performance of a classification 

model, where the prediction is a probability value between 0 

to 1. It is a loss function used in multi-class classification 

problems, where a model assigns an image to only one of 

several possible classes, and is preferred due to its simplicity, 

effectiveness and ease of implementation. Generally, the 

lesser the log loss, the better the model performs. 

 

 [ L = 
−1

𝑁
∑ ⬚𝑁
𝑖=1 ∑ ⬚𝐶

𝑐=1 𝑦𝑖, 𝑗𝑙𝑜𝑔(𝑃𝑖, 𝑗)]f 

Where: 
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Figure 3. (a) Accuracy vs No. of Epochs graph which gives a clear overview of the increase in train and val accuracy and a comparison 

between the two during the model training. (b) Loss vs No. of Epochs graph that depicts the comparison between train and val categorical 

cross entropy loss during the model training. 

L is the categorical-cross entropy loss 

N is the number of samples 

C is the number of classes 

Yi,J is a true label for the ith  sample and jth class 

Pi,J is a predicted probability for the  ith  sample and jth class 

2.7. Machine-Learning-Based Skin Disease 

Detection and Classification  

For the scope of this research, the experiment was done on a 

python platform 3.10.14 and the entire model was coded on 

tensorflow library using the keras API. The primary dataset 

utilized during this experiment was the ISIC 2019 Challenge 

Dataset containing 25,531 images of eight different classes.  

Combining all the discussed techniques, the paper has 

compiled an ensemble learning model which uses a two path 

algorithm utilizing already existing models: 

EfficientNetB2V2 and MobileNetV2 which are 

computationally simpler than other models used for this 

purpose previously. To get best weights for the proposed 

model experimentation was done with different optimizers, 

number of epochs, early stopping and fine tuning of the 

transfer learning models. Final weights for the model were 

obtained after running it for 10 epochs. To make sure that the 

model does not overfit and saves time during training, a 

callback option was placed for early stopping to analyze and 

save the weights after epochs which gave the best validation 

accuracy. Instead of using a separate fine tuning compilation, 

some of the layers from both the models were kept frozen to 

maintain while the last 30 layers were unfrozen, this improved 

the train accuracy significantly which was earlier just 75%. 

For testing the effectiveness and real usability of the model, a 

test data was created containing images from different classes 

for the model to predict to measure the model’s performance 

based on different standard metrics.  

3. Results 

After running the model for 10 epochs, a train accuracy of 

95.23% was reached along with a train loss of 0.1367 from an 

initial train accuracy of  38.02% along with an initial train loss 

of 1.572 in the first epoch. The validation accuracy attained 

on the other hand was 68% and a validation loss of 0.99 (figure 

3). After testing the model using the most accurate weights 

with the images from different classes, the test accuracy of the 

model was found to be about 0.70 . The recall or sensitivity of 

the model was calculated out to be 0.75 and the precision of 

the model was found out to be 0.625. This gave an overall F1 

score of approximately 0.667 for the model. The confusion 

matrix in figure 4 shows the model performance with distinct 

features while two classes that seem to confuse the model are 

AK (Actinic Keratosis) and DF (Dermatofibroma). On further 

exploring the data in these classes, it was found that the 

images lacked distinctly recognizable features and  had 

several distinct independent variations of the disease which 

seemed to be a bottleneck for the model’s learning. The 

images in the classes such as VASC with a limited amount of 

data were augmented and this has proved to yield results as 

high as 93%. Using EfficientNet and MobileNet as base 

feature extractors, the model gives promising results with 

lower computational complexity compared to the other state 

of the art models. The proposed model outperforms many 

models in terms of the training accuracy with the ISIC-2019 

dataset and can be taken for further testing with more data for 

more significant results. 
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Figure 4. Confusion matrix by giving the model equal number of images from each of the eight classes. 

Using a two-path algorithm for separate processed image and 

segmented image feature extraction helps deal with several 

issues that arise due to variation in images in skin disease 

classification, using a normal pre processed image along with 

a segmented ROI image helps the model generalize and 

concatenating the two outputs before classification helps in 

dealing with overfitting problem. Using the segmented ROI 

also tackles the problem of different skin-tones which 

normally cause a hindrance for the model and make it difficult 

to use in the real world diagnosis. 

The ISIC 2019 dataset is one of the most robust dataset for 

multiple-disease class identification in dermatology but the 

dataset is far from perfect. Although the dataset offers high 

quality of images, the classes are highly imbalanced where 

half the images in the dataset belong to a single class while the 

smallest class only has 200 images. Despite using image 

augmentation in an attempt to mitigate the issue, the confusion 

matrix clearly shows that some classes are better identified 

than others. Exploring further into the dataset it was found that 

few classes in the dataset contain images which can obstruct 

the feature extracting models during training and validation 

because the lesion areas in these images are either completely 

covered or very minute as compared to the other images in the 

same class. It can also be observed that dermatological 

classification with more than 3-5 classes from the ISIC dataset 

gives significantly lower results as most of the features like 

inflammation, rough and dried texture, scaly skin,  etc are 

extremely similar in many classes. This causes confusion in 

the feature extractors and leads to inaccurate results when 

predicting labels for new images. Thus, the research relies on 

modification and addition to the base dataset from other 

available datasets. 

3.1. Challenges and Limitations  

Unlike a binary classification problem, solving the multi-class 

dermatological diseases classification problem has several 

complexities. The foremost problem which arises is the 

availability of required images for each disease. Currently 

available datasets for multi class dermatological  

 



Journal of Knowledge Learning and Science Technology                   https://jklst.org/index.php/home   

 

181 

Research Paper Deep Learning 

Method 

Models  Dataset Target Classes Accuracy of the 

Best Model  

Z Rahman et. al., 

2021 [72] 

Ensemble learning 

with weighted 

averaging. 

ResNeXt, 

SeResNeXt, 

ResNet, Xception, 

and DenseNet. 

HAM10000 

ISIC-2019 

AKIEC, 

BCC, BKL, DF, 

MEL, NV, 

VASC,  

88.0% 

Kemal Polat et. 

al., 2020 [25] 

One-Versus-All 

approach & 

Ensemble learning 

Deep CNN HAM10000 AKIEC, 

BCC, BKL, DF, 

MEL, NV, 

VASC,  

92.9% 

AR. Lopez et. 

al.,2017 [73] 

Transfer learning VGG 16 ISIC Archive Malignant vs 

benign skin 

lesions. 

81.3% 

Catarina Barata et. 

al., 2019  

[74] 

Hierarchical 

Attention 

mechanism(CNN-

LSTM) and 

Ensembling 

DenseNet-161 and 

ResNet-Inception 

ISIC-2017 

ISIC-2018 

Melanocytic vs 

Non-Melanocytic 

MEL, NV, BCC, 

AKIEC, BKL, 

DF, and VASC. 

81.3%(balanced 

multi-class 

accuracy) 

64.1%(balanced 

multi-class 

accuracy) 

Nils Gessert et. 

al., 2018 [75] 

Transfer Learning, 

Ensembling and 

Meta-Learning 

54 models with 

these architectures: 

SENet154, 

ResNeXt101 

32x4d, 

Densenet201, 

Densenet161, 

Densenet169, SE-

Resnet101, 

PolyNet. 

ISIC-2016, 

ISIC-2017 and 

HAM10000. 

MEL, NV, BCC, 

AKIEC, BKL, 

DF, and VASC. 

97.0% 

85.6%(balanced 

multi-class 

accuracy) 

Amirreza Mahbod 

et. al., 2020 [76] 

Transfer Learning, 

and Ensembling( 

Multi-Scale Multi 

CNN 3 level fusion 

Scheme) 

EfficientNetB0, 

EfficientNetB1 and 

SeResNeXt-50 

ISIC-2016, 

ISIC-2017, and 

ISIC-2018, 

MEL, NV, BCC, 

AKIEC, BKL, 

DF, and VASC. 

96.1% 

87.4%(balanced 

multi-class 

accuracy) 

Sara Atito Ali 

Ahmed1 et. al., 

2020  [77] 

Transfer Learning, 

Model Fine-tuning 

and Ensembling 

Xception, 

Inception-ResNet-

V2, and 

NasNetLarge 

ISIC-2019 MEL, NV, BCC, 

AK, BKL, DF, 

VASC, SCC, and 

UNK(None of the 

others) 

91.5% 

60.2%(balanced 

multi-class 

accuracy) 

Josef Steppan et. 

al., 2021 [78] 

Transfer Learning, 

Model Fine Tuning 

and Ensembling 

EfficientNet-B5, 

SE-ResNeXt-

101(32x4d), 

ISIC-2019, 

PH2, 7 Point 

criteria 

MEL, NV, BCC, 

AK, BKL, DF, 

VASC, SCC, and 

92.3% 

63.4%(balanced 

multi-class 

https://www.sciencedirect.com/science/article/pii/S2352914821001465
https://www.researchgate.net/publication/364028720_Detection_of_Skin_Diseases_from_Dermoscopy_Image_Using_the_combination_of_Convolutional_Neural_Network_and_One-versus-All
https://www.actapress.com/PaperInfo.aspx?paperId=456417
https://ieeexplore.ieee.org/document/9025626
https://arxiv.org/abs/1808.01694
https://www.sciencedirect.com/science/article/abs/pii/S0169260719311460?via%3Dihub
https://www.researchgate.net/publication/348323324_Skin_Lesion_Classification_With_Deep_CNN_Ensembles
https://arxiv.org/abs/2101.03814
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EfficientNet-B4, 

Inception-ResNet-

v2 

database, 

MED-NOD, 

SKINL2 and 

SD-198. 

UNK(None of the 

others) 

accuracy) 

Esteva et al., 2017 

[23] 

 

Transfer Learning Inception v3 

 

ISIC Archive, 

DermNet, SD-

198 

Melanoma, BCC, 

SCC 

72.1% 

Our model 

presented in this 

research 

Transfer Learning 

and Ensembling 

EfficientNetB2V2, 

MobileNetV2 

ISIC-2019 + 

Additional 

data 

AK, BCC, DF, 

BKL, MEL, NV, 

SCC, VASC 

70.3% 

Table 3. Past image classification techniques used and results.

disease classification like the ISIC, HAM1000, DermNet, etc. 

all are based on specific classes of diseases and contain 

dermoscopic images. Due to this the real world accuracy of 

the model remains low and the model cannot precisely 

diagnose the specific disease in the class. Although modifying 

these datasets and building a dataset with more classes can 

help in training the model to classify more diseases, increasing 

the number of classes can negatively affect the model’s 

accuracy.  

Another issue that arises in dermatoscopic classification is 

presence of multiple lesion areas in a single image, which is 

commonly seen in the real world. Segmenting the ROI has 

been proposed as a solution for this but in most cases the less 

significant lesion goes undetected. Besides the quality of the 

images, it can also be stated that the different angles and 

lighting conditions affect the practical usage of models with 

new data. The proposed solution to this is creating variations 

of the same image using augmentation techniques which 

rotate the images by random angles, randomly flip the image, 

etc. The field of view of the dermoscope can affect the 

visibility of the lesion in the image. This can adversely affect 

the classification accuracy, the proposed solution to this in the 

research involves modification of the dataset to have a 

variation of images with a variety of FOVs and difference in 

the overall spread of the lesion area. Many skin diseases are 

found in the scalp region or are otherwise covered with hair. 

Although the simpler approach as proposed in the paper i.e. 

using filters over the image during preprocessing give 

promising results for small, thin patches of hair over the lesion 

but these can tamper with and even remove the entire lesion 

area when the ROI is densely covered with hair. It is also 

crucial to point out that several skin diseases cannot be 

identified just based on the images due to similarity between 

different diseases, a reliable diagnosis requires background 

details and other tests which an image classification model 

ignores. These models work under the assumption that the 

different classes have different features for identification but 

that is not the case with several skin diseases. This can lead to 

false diagnosis that can be dangerous in the real world. 

4. Conclusion 

Analyzing the problems, the different solutions given by 

researchers in the field and their limitations a future pathway 

is formed to completely overcome the complex skin disease 

classification problem. Following are the most prominent and 

promising segments in this field that can lead to a bio-

technical  breakthrough. Several models have been able to 

achieve amazing accuracy for classification on a few classes 

such as those available in the ISIC datasets but the real skin 

disease diagnosis problem is far from being solved because all 

these models assume the availability of high quality 

dermoscopic images which do not go beyond the specified 

class and have exorbitant computational cost. For a real world 

classifier it is important to ensure that more common diseases 

can be diagnosed with high accuracy using simple camera 

images. For this the SCIN dataset seems very promising where 

all the data has been collected through online ads from 

common people. 

A classifier that considers a patient's medical records and 

other factors like age, gender, etc. can be a step into the future 

of dermatological disease classification. A single 

dermatological disease class can have several dissimilar types 

of images with different shapes, textures and color patterns 

images. When the features for a single class are so different, 

it makes multi class identification almost with high accuracy 

almost impossible.  An unexplored approach for this is 

subdividing similar images inside a class into subclasses, such 

https://www.nature.com/articles/nature21056
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that the model treats them as different classes with the same 

label name. This approach can be taken for data acquisition 

and processing for training a model that diagnoses a large 

number of skin diseases with easily available, low quality 

images. The most prominent future direction is moving 

towards an accessible model which can identify most of the 

common and dangerous diseases using the insights shared in 

the research. 

Deep Learning, a more advanced and modern approach to 

Machine Learning has produced more efficient and reliable 

results over the predecessor almost every time  [79]. The 

classification of medical images into the ones affected by 

various dermatological diseases via the use of such deep 

learning models has been a recent topic of research but most 

of these models provide binary based classification, focusing 

only on identifying if the patient is infected with a specific 

disease only [53]. This has been a hindrance to the reliability 

of artificial intelligence models for the dermatological 

diagnosis problem. The ISIC-2019 Challenge Dataset used in 

the research offers an eight class classification of 

dermatological diseases but a prominent problem of class 

imbalance is still persistent. Furthermore, the images of some 

classes contain images that often contribute to bringing down 

the model’s accuracy because of their dissimilar nature and 

lack of consistent features. A proposed solution for the same 

is grouping the dataset classes into further subclasses using 

unsupervised learning [80].  That could help provide a more 

specific diagnosis. The power of State-of-the-art models such 

as InceptionV3, ResNet and VGG19 can also be harnessed for 

more reliable and accurate results. A major aspect of this 

study is the use of ensemble learning along with a two path 

algorithm, which has helped boost the performance of the 

proposed model and can also be further explored with other 

high performing models to achieve notable results. The 

model’s performance could further benefit from a deeper dive 

into better image preprocessing and feature extraction 

methods  [81]. This can help produce results comparable to 

other complex models even on lower-end devices further 

assisting the ease of early detection of these diseases by 

medical professionals in the fields of single cell genomics, 

biosensors as well as non-medical professionals [82] [83] 
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