
 

Introduction 

In the modern ICT landscape, the challenge of managing the high costs associated with 

advanced storage and computational systems has driven the adoption of distributed systems. 

These systems, including grid and cloud computing, provide scalable and cost-effective 

solutions for handling large data volumes and complex computations [1].. As these 

technologies evolve, they offer affordable access to powerful resources and services, reshaping 

traditional system design and optimization paradigms. 

Cloud computing, in particular, introduces a new dimension by decoupling users from 

providers through a pricing scheme based on resource consumption. This shift has transformed 

how distributed systems are perceived and utilized, moving beyond their conventional roles. 

Our preliminary research, conducted on Amazon EC2 and a local cloud testbed, highlights a 

complex interplay between distributed systems and economic factors related to pricing [2].. 
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  Abstract 
This article investigates the economic implications of pricing models in cloud and distributed computing 

systems, emphasizing their influence on system performance and user cost efficiency. We analyze the efficacy 

of various pricing structures, including pay-as-you-go and resource-consumption-based models, and their 

impact on both operational efficiency and financial management. Our findings highlight significant 

challenges in optimizing cost-efficiency without compromising system effectiveness and call for the 

development of more sophisticated pricing strategies. By examining the limitations of current economic 

models and the evolution of dynamic and auction-based pricing mechanisms, the study offers insights into 

future research directions aimed at enhancing fairness and competitiveness in cloud computing environments. 
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This evolving dynamic raises critical questions about pricing models and their impact on 

system efficiency and user satisfaction. 

This paper explores the impact of pricing schemes on cloud and distributed systems. We 

provide a comparative review of grid and cloud computing economic models, examining how 

these models address business objectives and economic principles. By analyzing the 

fundamental changes introduced by cloud computing, we seek to uncover new insights into 

distributed systems' optimization and economic implications. This exploration will contribute 

to understanding how pricing mechanisms influence the effectiveness and accessibility of these 

advanced technologies. 

 

Related Work 

Recent cloud providers (e.g., Amazon Web Services, Google Cloud Platform, and 

Microsoft Azure) have enabled users to perform their computation tasks in a public cloud. 

These providers use a pricing scheme according to incurred resource consumption[3-4].. For 

example, Amazon EC2 provides a virtual machine with a single CPU core at $0.095 per hour. 

This pay-as-you-go model lets users utilize a public cloud at a fraction of the cost of owning a 

dedicated private one while allowing providers to profit by serving many users. Case studies 

from these cloud providers indicate that various applications have been deployed in the cloud, 

such as storage backup, e-commerce and high-performance computing [5].. Defining a uniform 

pricing scheme for such a diverse set of applications is a non-trivial task for a provider.  

This cloud-computing paradigm has transformed a traditional distributed system into a 

“two-party” computation with pricing as the bridge. A provider designs its infrastructure to 

maximize profit with respect to the pricing scheme, while a user designs her application 

according to the incurred cost. This contrasts with a traditional distributed system, where the 

goal is to optimize for throughput, latency, or other system metrics as a single and the whole 

system.  

 

Challenges in Economic Models for Grid and Cloud Computing 

Grid and cloud computing technologies have rapidly advanced, providing users with 

powerful, configurable resources and high-speed data transfer at affordable costs [6].. Despite 

these advancements, widespread adoption is impeded by the absence of effective and 

affordable economic and pricing models. To be viable, these models must align with legal 

jurisdictions, tax regulations, and business objectives. However, existing economic models 

have largely been applied to resource allocation algorithms rather than developing 

comprehensive pricing structures for commercial use. 

Economic models play a critical role in determining pricing and tariff structures to optimize 

returns on investment, attract customers, and manage resource deployment efficiently. Despite 

their potential, most economic models have been limited to theoretical studies or simulations 

rather than practical business implementations [7].. Challenges include creating sustainable 

tariff structures and reconciling conflicting pricing policies and business objectives. Issues such 

as dynamic resource loads and varying third-party pricing policies add to the complexity of 

developing equitable and effective pricing models. Addressing these issues is essential for 
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fostering widespread adoption and operational efficiency in grid and cloud computing 

environments. 

 

The Interplay Between System Design and Pricing 

Pricing in cloud computing is deeply intertwined with system design and optimization. 

Resource-consumption-based pricing introduces a new dimension to system optimization, 

making cost an explicit and measurable metric. This shift prompts critical questions about 

optimising systems for cost efficiency and how these cost metrics relate to traditional 

performance indicators like throughput [8]..If providers and users optimize based on dollar cost 

and profit, this could lead to a globally optimal system that achieves the desired outcomes at 

the lowest cost. However, this relationship between pricing and system design is complex and 

impacts various aspects of cloud computing. 

Our preliminary studies found that optimizing for cost does not necessarily result in the 

most effective system [9-11]..Users often struggle with optimization due to limited knowledge 

of the underlying mechanisms deployed by providers. Pricing structures, influenced by system 

configurations and resource utilization, can lead to significant variations in cost and 

profitability. Additionally, cloud computing's pay-as-you-go model places the burden of failure 

costs on users, raising concerns about fairness and responsibility. These insights highlight the 

need for further exploration into how pricing impacts system design and optimization in cloud 

computing environments. 

 

Economic Aspects of Pricing: Fairness and Competition 

The economic dimensions of cloud computing pricing include key concepts such as 

fairness and competition, which significantly impact pricing models. Pricing fairness 

encompasses both personal and social fairness. [12]..Personal fairness addresses individual 

user expectations, while social fairness ensures that pricing is equitable across all users and 

does not grant providers excessive profits. For example, socially unfair pricing models are 

those where some users pay significantly more than others for similar services. This paper 

examines social fairness within cloud pricing schemes to determine if pricing is uniform and 

just across all users. 

Competition plays a crucial role in shaping cloud pricing strategies. It drives providers to 

innovate and lower costs to gain a competitive edge 13].Unlike fixed pricing models, 

competitive markets encourage providers to adopt new technologies and improve cost-

efficiency. This dynamic can influence how pricing models evolve and address fairness 

concerns. Our study highlights the complex interplay between competition and pricing fairness, 

emphasizing the need for balanced pricing models considering market competitiveness and 

equitable cost distribution. 

 

Grid and cloud computing architecture  

Grid and cloud computing consist of services, protocols, resources and other management 

functions constituting six layers, as shown in Figure.1 with the following definition: 

Grid and Cloud System Resources Fabric Layer 1 is the heart of the grid and cloud system 

architecture. It is the lowest layer, the foundation of all services. Various resources such as 
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processors, storage and networks are accessible in this layer. Communication Connectivity 

Layer 2 14]. It is responsible for security and communications. It identifies protocols for 

security functions such as authentication, access control, data integrity, confidentiality and 

communication. Unified Resources Layer 3: it is responsible for determining protocols for 

system configuration, accounting, monitoring, control, job initiation, negotiation, and payment 

of sharing operations on individual resources. Collective and Composite Layer 4: coordinating 

different resources is the main role of this layer, for example, directory services. 

Middleware Layer 5: It is a software layer between the operating system and application that 

enables continuous information sharing between multiple applications. It is also considered a 

standard for interconnecting components. Middleware employs brokers to act as its virtual 

service providers to resources in a transparent manner to shield the end-user from complex 

details.  

 
Figure 1. Grid & Cloud Computing Resources, Services & Protocol Architecture 

 

There is no specific categorization for grids. Numerous IT/ICT suppliers, researchers, and 

scientists have their own classification for grids based on their insight, provision and usage. 

For example, Mike Ault and Madhu Tumma jointly stated that IBM specified three types of 

grids [15].:  

Computational Grid: Nowadays, even supercomputers are unable to provide computational 

power. Even if they did, it is not logical from an economic justification point of view. A 

computational grid is defined as a software and hardware infrastructure providing high 

computational processing capabilities with consistent, inexpensive, dependable access.  

Data Grid: It is a solution for managing, sharing, and controlling large amounts of scattered 

data. Remote local data is accessible through replica data grids, which offer the most cost-

effective solution.3. Scavenging Grid: Jobs are transferred between machines to ensure the 

smooth operation of the task by cycle- scavengers utilise idling / free/available PCs.  

Pay-as-you-go Model  



197     Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Volume 3, Issue 3, Sep. 2024 

 

The importance of pricing in economics goes far beyond mere costing and profoundly 

impacts the use of systems and the allocation of resources. For example, pricing strategies can 

not only be used to control the congestion of Internet resources but also effectively adjust the 

demand and supply of computing resources in the cloud computing grid [16-17].The pay-as-

you-go model in cloud computing uses pricing as the key connection point between users and 

service providers, and currently, mainstream cloud service providers such as Amazon have 

adopted pricing models based on virtual machine hours, such as $0.095 per hour [18].This 

pricing strategy reflects cloud service providers' dynamic management of computing resources 

while also driving continued innovation in pricing schemes. 

As the cloud services market matures, pricing models are evolving. Amazon now offers a 

variety of pricing schemes, including auction pricing, designed to meet the needs of different 

users and optimize resource allocation [19].At the same time, academia and industry have also 

proposed various innovative pricing schemes to improve the system's behaviour. For example, 

Singh et al. proposed a dynamic pricing strategy for computing resource bookings, while 

Jimenez et al. developed a bilateral settlement model to reduce the risk of malicious 

overcharging [20].These studies not only promote the innovation of the pricing model but also 

provide new ideas for the fair allocation of cloud computing resources and user cost control. 

In addition, research into pay-as-you-go cloud services is receiving increasing attention. 

Napper et al. and Walker compared Amazon EC2 with private cloud in high-performance 

computing, analyzing its cost, availability, and performance. These studies have helped to 

understand the strengths and weaknesses of different cloud service models and have driven the 

discussion of cloud service pricing optimization [21]. However, this study extends the 

perspective to the dual cost and profit considerations and deeply explores the interaction 

between system behaviour and economic efficiency. This comprehensive research can reveal 

the full impact of pricing strategies on the cloud environment, further pushing the frontiers of 

cloud service pricing and optimization models. 

 

Methodology  

We have assembled a set of workloads to approximate a typical workload in current cloud 

computing. With these workloads, we use two complementary approaches for evaluations. One 

is a black-box approach with Amazon EC2 [22]. As other cloud providers, such as Google and 

Microsoft, use similar pricing schemes, we expect our pricing-related findings to apply to 

those. Our second approach is to set up a cloud-computing testbed called Spring so that we can 

perform fully controlled experiments with the full knowledge of how the underlying system 

works.  

 

Data set 

We selected several popular applications to model different application areas, which have 

been widely used in case studies of cloud service providers. 

Postmark: As an I/O intensive benchmark tool, Postmark was used to simulate file 

transactions in various Web-based applications. In the experiment, the default Settings included 

a total file size of about 5 GB (1000 files, 5000 KB each); The number of transactions is 1000. 
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This setup effectively evaluates the performance of file operations and provides real-world data 

support for I/O-intensive applications. 

PARSEC: PARSEC is a benchmarking suite with real-world applications. We selected two 

applications, Dedup and Black-Scholes, representing storage archiving and high-performance 

computing in the cloud, respectively. Dedup is used to compress the file by teredo, and its 

default setting is about 184 MB of input data; Black-Scholes calculates the price of European 

options, which are set to 10 million by default. [23-26].These two benchmarks can provide 

insight into the performance of storage and compute tasks. 

Hadoop: For large-scale data processing, we used Hadoop 0.20.0 and selected WordCount 

and StreamSort from the GridMix benchmark. The default input data set for both applications 

is 16 GB. These tests assess the efficiency and performance of large-scale data processing and 

reflect Hadoop's ability to handle large amounts of data. 

Through these benchmarks, we are able to gain insight into how different types of 

applications perform in a cloud environment and assess their impact on resource demand and 

performance. 

Amazon EC2  

In the Amazon EC2 experiment, our implementation fees were charged according to 

Amazon's pricing scheme. When considering amortized costs in the long-run scenario, we 

calculate user expenses as follows: 

Costuser=Price×t （1） 

Where t is the total running time of the task (in hours)，Price is the cost of virtual machines 

per hour. To simplify the calculation, we excluded storage and data transfer fees between the 

client and the cloud, as these accounted for a minuscule percentage of the total cost in our 

experiment (less than 1%). This processing ensures that our costing is more precise and focuses 

on the actual running costs of virtual machines, which is critical to evaluating the economics 

of performing tasks on Amazon EC2. In addition, while storage and data transfer fees typically 

impact overall costs, within the scope of this experiment, their impact is considered negligible, 

leading our expense analysis to focus more on the direct use costs of computing resources. 

Cost and Profit Estimation in the Spring System 

Spring virtualizes physical data centres to provide virtual machines (VMs) to users through 

two primary modules: the Virtual Machine Monitor (VMM) [27] and the auditor. The VMM 

handles VM allocation, consolidation, and migration across physical machines, while the 

auditor calculates user expenses and estimates provider profits, helping to assess the impact of 

pricing. 

We subtract the total provider cost from the expected user payments derived from the 

incurred virtual machine hours to estimate provider profit. The total provider cost includes the 

amortized cost of operating the data centre and the cost of fully burdened power consumption, 

as estimated by Hamilton. Full burdened power consumption is calculated using: 

Costfull=p×Praw×PUE(2) 

where pp is the electricity price (dollars per kWh), PrawPraw is the total energy 

consumption of IT equipment (kWh), and \text{PUE} is the Power Usage Effectiveness 

metric[28].. 

The total provider cost is given by: 
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Cost provider=(Costfull+Costamortized) ×Scale (3) 

 Costamortized is the amortized cost of servers. Scale adjusts the total cost based on the ratio 

of estimated total cost to the sum of fully burdened power consumption and amortized server 

cost. 

To estimate CostamortizedCostamortized, we use: 

Costamortized=CamortizedUnit×tserver (4) 

 CamortizedUnitis is the amortized cost per server per hour, and tserver is the server usage time in 

hours. 

Power consumption is modelled for servers and routers. For servers, energy consumption 

is estimated with a linear regression model based on resource utilization: 

Pserver=Pidle+ucpu×c0+uio×c1 (5) 

where ucpuand uio are CPU utilization and I/O bandwidth, respectively, and c0 and c1 are the 

model coefficients. Router power consumption follows a model from previous research. 

Table 1: The configurations and prices on different VM types on Amazon (Linux, 

California, America, Jan- 2010)  

 

 
 

Experimental Setup and Configuration 

To investigate the interaction between pricing mechanisms and system performance, we 

conducted experiments on both Amazon EC2 and Spring [29].The experimental setup was 

designed to ensure comparability across platforms. 

Amazon EC2 Configuration: We utilized the default on-demand virtual machine types 

offered by EC2: small and medium instances. These instances, running Fedora Linux, were 

deployed in California, USA. The specific configurations and pricing details for these instances 

are outlined in Table 1. This setup allowed us to evaluate the performance and cost efficiency 

of various instance types in a cloud environment. 

Spring Configuration: For our experiments on Spring, we employed VirtualBox [24]. to 

create and manage virtual machines. VirtualBox provided the flexibility to simulate the 

configurations and pricing of different instances akin to those on Amazon EC2. The host 

operating system was Windows Server 2003, and the guest OS was Fedora 10. We used an 

eight-core machine for single-machine benchmarks and a cluster of 32 four-core machines for 

evaluating Hadoop. Each VM was allocated a dedicated CPU core to mimic virtual core 

allocation in EC2.[30]. For instance, we consolidated up to four medium instances on an eight-

core machine. We also utilized a power meter to measure and validate power consumption, 

ensuring that our power consumption model accurately reflected real-world measurements. 
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Table 2: Hardware configuration of machines in Spring  

 
 

Table 3: Elapsed time and costs of single-machine benchmarks on small and medium instances on EC2  

 
The current price of the SSD is around $350, and the price of a SATA hard drive (500GB) 

is around $50. We adjust the amortized cost of the machine with an SSD to $0.09 per hour. 

SSDs also offer a power efficiency advantage compared to hard disks, and we adjust power 

consumption accordingly.  

We study Spring's system throughput in terms of the number of tasks finished per hour, 

user costs, and provider profits.  

 

Optimizing for Cost  

We study the difference between optimizations for cost and optimizations for performance 

on users and providers separately. We first present the results of user optimizations on EC2, 

since the results on Spring are similar to those on EC2 [31]. Next, we present the results of 

provider optimizations, including consolidation and dif- ferent workload scheduling algorithms 

on Spring.  

 
Figure 2. Performance and costs for Hadoop vs. the number of same-type instances on EC2 
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Table 4: Effects of virtual-machine consolidation in Spring (every four Postmark, small VM type)  

 
Application-Level Optimizations and Instance Selection: On Amazon EC2, user 

optimizations can be categorized into application-level adjustments, choosing the appropriate 

instance type, and tuning the number of instances [32].For a fixed instance type, tuning 

parameters such as the number of threads can impact performance and cost. For example, 

optimizing these parameters for Postmark and PARSEC improved performance and reduced 

user costs. Notably, with current consumption-based pricing models, optimizing for 

performance aligns closely with optimizing for cost. 

Instance Type and Number of Instances: Selecting the optimal instance type is critical 

in balancing performance and cost. As shown in Table 4, Postmark exhibits slightly longer 

elapsed times on smaller instances but incurs nearly 50% lower costs compared to medium 

instances, highlighting a trade-off between performance and cost. Conversely, for Dedup and 

Black-Scholes, medium instances offer faster execution times and lower costs than small 

instances. This demonstrates that the choice of instance type can affect performance and cost, 

with no single instance type being the best choice for all scenarios. Figure 1 illustrates that 

varying the number of instances from four to sixteen in Hadoop does not yield a consistent 

pattern in cost, suggesting that optimal settings for cost may differ from those for performance. 

 
Figure 3: Variations among three instances (Postmark) on EC2 

 

Provider Optimizations on Spring 

Virtual-Machine Consolidation and Cost Implications: In our study of virtual-machine 

(VM) consolidation in Spring, we examined the impact of running multiple VMs on the same 

physical machine. We observed significant effects on power consumption and provider 

profitability by varying the number of VMs from one to four. Consolidation notably reduced 
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power consumption by up to 150% for BlackScholes and 21% for Postmark. This reduction in 

power usage led to substantial increases in provider profit and return on investment (ROI), with 

improvements of 180% and 340% for Postmark and Black-Scholes, respectively. However, as 

more tasks were consolidated, system throughput peaked with two VMs. Then, it declined, 

highlighting a potential issue in pricing strategies that maximize profit at the expense of system 

performance. 

Hadoop Benchmarks and Variability: Similar trends were observed when analyzing 

multi-machine benchmarks with Hadoop.Consolidation increased provider ROI by 135% and 

118% for WordCount and StreamSort, respectively, but also resulted in significant throughput 

degradation—up to 350% for StreamSort. This degradation confirms the earlier findings from 

single-machine benchmarks. Additionally, cost variations among different instances on EC2, 

such as discrepancies in running Postmark across different small instances and similar patterns 

in Spring, indicate a disparity in pricing fairness. These findings underscore the broader 

implications of pricing schemes on cloud computing and distributed systems, revealing 

inconsistencies that could affect both user costs and system efficiency. 

 

Conclusion 

Exploring pricing models in cloud and distributed systems reveals a significant impact on 

system efficiency and user satisfaction. Our findings indicate that the pay-as-you-go model, 

prevalent in cloud computing, introduces a complex interplay between cost management and 

system optimization. While resource-consumption-based pricing aligns closely with 

performance optimization, it also underscores challenges in achieving cost efficiency without 

compromising system effectiveness. This dynamic calls for a nuanced approach to pricing 

strategies that balance cost control with optimal resource utilization. 

Furthermore, the comparative analysis of grid and cloud computing economic models 

highlights the limitations of existing pricing structures. Despite technological advancements, 

the lack of comprehensive and practical economic models hinders widespread adoption. 

Addressing this gap requires the development of sustainable tariff structures that align with 

legal, regulatory, and business objectives, ultimately fostering greater operational efficiency 

and market competitiveness. 

Finally, our study underscores the importance of continuous innovation in pricing schemes. 

The evolution of cloud pricing models, including dynamic and auction-based strategies, 

reflects ongoing efforts to optimize resource allocation and improve cost management. Future 

research should focus on refining these models to enhance fairness and competitiveness while 

ensuring that they effectively address the diverse needs of users and providers. By advancing 

pricing mechanisms, we can better support the growth and efficiency of cloud and distributed 

computing environments. 
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