
 

1. INTRODUCTION 

1.1. Emergence of Federated Learning  

 Federated learning is an emerging distributed machine learning technique that enables 

collaborative training of models among devices and servers without exchanging private data 

(McMahan et al., 2017). In conventional centralized machine learning, all the training data 

need to be sent to a central server for model training, which poses serious privacy and security 
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risks because of the sheer volume of sensitive personal and health data involved. To address 

this issue, federated learning allows the training process to occur locally on personal devices 

such as mobile phones and Edge/Cloud servers, after which only the model parameters are 

exchanged without revealing the underlying private data. This promotes collaborative learning 

across institutions while protecting individual privacy (Li et al., 2018). Over the past few years, 

federated learning has gained significant attention from both industry and academia for its 

ability to learn from decentralized data in a privacy-preserving manner (Google AI Blog, 2017). 

Owing to its decentralized and privacy-preserving nature, federated learning is highly 

suitable for healthcare applications involving collaboration across multiple institutions for 

tasks such as disease prediction, diagnosis, and treatment optimization. Some key works 

include predictive modeling of clinical outcomes for COVID-19 patients through federated 

learning across different hospitals (Dayan et al., 2021). Another study performed end-to-end 

private model training across diverse medical imaging datasets from multiple centers for tasks 

such as segmentation (Kaissis et al., 2021). Federated averaging enables the distributed training 

of models for automated diagnostic analysis of medical images without the need to share 

patient data (McMahan et al., 2017). 

 Nevertheless, federated learning is not safe from privacy and security threats, which must 

be resolved for effective and safe application in sensitive fields such as healthcare. Model 

parameters and updates can be used to leak privacy within model inversion, membership 

inference, and attribute inference attacks. Moreover, it is also possible to steal the intellectual 

property of locally trained models. In addition, there are more technical problems associated 

with data heterogeneity and distribution and differences in the structure of the institutions and 

organizations that participate in the collaboration. Furthermore, there is a need for strong 

methods to achieve privacy, utility and inefficiency for the complete implementation of 

federated learning. 

 

1.2. Privacy and Security Risks Federated Learning 

Unlike federated learning, which decentralizes data, model updates exchanged from 

devices to servers during training can leak sensitive information (Shokri and Shmatikov, 2015; 

Melis et al., 2019). They mentioned that the adversaries can use them to learn some of the 

parameters of the training data, such as membership, properties or reconstructed raw values 

via model inversion, attribute inference or model extraction attacks (Nasr et al., 2019; Song et 

al., 2017; Fredrikson et al., 2015). Furthermore, performing distributed training in multiple 

institutions comes with adversarial drill risks of attackers injecting poisoned updates or 

attackers deducing the propriety characteristics of other participants’ local models (Hitaj et al., 

2017; Bagdasaryan et al., 2020). Thus, even if raw data are not shared, parties still want 

assurances that their private training data and local model intelligence are protected during the 

collaborative learning process (Fletcher and Islam, 2020). This hinders wider adoption of 

federated learning for applications involving sensitive data domains such as healthcare. 

 

1.3. Overcoming Privacy and Security Risks  

 Several privacy-preserving techniques have been proposed and analyzed to counter 

privacy threats in federated learning and enable its secure use on sensitive health data 
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(Jayaraman and Evans, 2019; Kaissis et al., 2021). Differential privacy is a framework that can 

limit privacy breaches from model updates by adding calibrated noise (Dwork, 2006). 

Homomorphic encryption enables computations directly on encrypted model updates for 

outsourced computations (Gentry, 2009). Securing multiparty computations distributively 

trains a model among parties without directly sharing individual updates (Bonawitz et al., 

2017). Information obfuscation hides informative patterns while preserving utility via 

techniques such as vector perturbations (Wang et al., 2020) or generative models (Hitaj et al., 

2017). Privacy-aware objectives modify traditional learning objectives to learn privacy-

respecting representations (Phong et al., 2018). 

 However, balancing privacy, utility and efficiency remains challenging. Furthermore, 

comparisons of such approaches against different types of attacks are still lacking because of 

their reliable use in healthcare applications (Zhang and Zhu, 2021). This survey aims to provide 

a systematic overview of key privacy and security risks in federated learning and analyzes 

existing mitigation strategies to realize their full potential. 

 

 1.4. Research gaps 

While significant advances have been made, some important research gaps remain in the 

development of robust privacy-preserving federated learning models for practical collaborative 

health data analysis across institutions: 

- Comprehensive benchmarking and evaluation: Standard frameworks and metrics are 

needed to benchmark privacy, utility and inefficiency of techniques against different threats 

(Karargyris et al., 2021; Melis et al., 2021). Real-world datasets and models are also crucial. 

- Balancing privacy-utility-efficiency tradeoffs: Achieving an optimal balance remains 

challenging because of modeling assumptions and implementation overheads (Chen et al., 

2020; Hitaj et al., 2017). Adaptive techniques that match privacy levels to data sensitivity are 

needed. 

- Addressing multiple threats: Existing works address mainly specific attacks in 

isolation. Combinations of defenses that handle a broad threat surface are lacking (Nasr et al., 

2019; Wang et al., 2019). 

- Scaling to complex heterogeneous healthcare data: Most works consider simple tasks 

or assume IID data, unlike real healthcare applications involving diverse, skewed 

multiinstitutional data (Kaissis et al., 2021; Sattler et al., 2020). 

- Bridging theory and practice: Practical considerations in implementing robust, scalable 

and compatible privacy techniques in production systems are still underexplored (Melis et al., 

2019; Balle et al., 2021). 

- Standards and regulations: A lack of universal standards and unclear regulations hinder 

widespread ethical use of privacy techniques in healthcare (Christen et al., 2021; VOigt and 

Bussche, 2017). 

This review aims to address these gaps by providing a comprehensive analysis of threats 

and mitigation strategies in federated learning. 

 

1.5. Purpose of The Review  
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 The main purpose of this article is to provide a systematic review of key privacy threats in 

federated learning and analyze existing mitigation strategies to enable trustworthy 

collaborative health data analysis across multiple institutions without compromising user 

privacy and data security. It discusses open challenges and outlines future directions for 

developing robust privacy-preserving federated learning models suitable for practical 

healthcare applications involving sensitive patient data. 

1.6. Review Aims and Objectives  

 The aims of this review are as follows: 

1) Initially, it is important to provide a broad picture of the numerous privacy risks that 

will be associated with waiting for the federated learning models when they are employed for 

collaborative analytics of health information across institutions. This involves discussing 

attacks that target leaked information from model updates such as membership inference, 

attribute inference and model extraction. 

2) To analyze the state-of-the-art techniques proposed to counter these privacy threats and 

enhance security in federated learning. This covers defenses under differential privacy, secure 

computation, information obfuscation and privacy-aware learning paradigms. The objective is 

to understand how existing methods address specific threats. 

3) To evaluate the practical considerations and limitations of existing privacy-preserving 

techniques when they are applied to real-world healthcare use cases. This involves analyzing 

the trade-offs between privacy, utility and efficiency of different methods. 

4) To identify important open challenges and research gaps in the development of robust 

privacy techniques that can balance privacy, utility and scalability for complex healthcare 

applications involving heterogeneous multi-institutional data. 

5) To identify recommendations and prospective studies of standardized evaluation and 

adaptive techniques, multiple threats should be recognized, and the integration of theory and 

practice to achieve a reliable federated learning system for collaborative health analytics. 

 The general objective of this review is to offer guidelines for the safe implementation of 

federated learning in sensitive areas such as healthcare. 

 

2. LITERATURE STUDY OF PRIVACY-PRESERVING FEDERATED 

LEARNING IN HEALTHCARE 

2.1. Emergence and Applications of Federated Learning in Healthcare  

2.1.1. Evolution of Federated Learning Techniques  

 Federated learning then emerged as a machine learning approach aimed at training models 

in devices and servers in parallel without sharing users’ data. As referred to by McMahan et al. 

(2017), FL frameworks loop through local client-sided training on the supplied training data 

and then aggregation of the distributed local computed model updates. It also helps consolidate 

disparate datasets in various institutions to build models that are much more general with far 

higher throughputs (Dayan et al., 2021). In the words of Li et al. (2018), federated learning 

allows model training on a distributed set of data, but no actual data are shared. The authors 

note that this is done in a cyclical manner where local models of on-user devices are trained 

and the updates of the parameters are collected by a master server for the creation of the global 
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model. They proposed a novel global model that is then sent back to the devices for additional 

local training, which makes the global training of the models possible without sharing the 

actual data of the users. 

 Analyzing the potential of federated learning in the healthcare domain, Dayan et al. (2021) 

reported that it can be effective. This study established clinical outcomes for COVID-19 

patients by training models on hospital patient data with the ability to share information. This 

approach relies on the distributed form of medical data while maintaining the privacy of the 

patient’s information, which increases the performance of the models compared with the 

models trained on the enclosed databases. Two other areas that have been discussed earlier as 

promising applications of federated learning in healthcare include automated diagnostic 

analysis of medical images on the basis of distributed model training across datasets originating 

from different medical centers (McMahan and McMahan 2017). Through decentralized 

training of models using different imaging data without sharing data with a central repository, 

federated learning provides a means of creating accurate diagnostic models that are 

generalizable without compromising patients’ confidence. 

 

2.1.2. Applications in Predictive Healthcare Modeling  

Initial use cases of federated learning in healthcare were therefore aimed at building risk 

assessment models for COVID-19-affected patients. Dayan et al. (2021) reported that federated 

learning allows the training of models on data from multiple hospitals without raw data 

exchange due to its sensitivity. This approach capitalizes on the spread of medical data while 

keeping patient data private, which helps enhance the performance of the model compared with 

models that are based on closed data. It has also been used in a federated learning manner for 

automated diagnostic analysis of medical images. In 2017, McMahan et al. reported that 

federated learning methodologies were utilized to train models across different datasets with 

origins in different medical centers. This approach helps build models with more accurate 

diagnoses and is more generally applicable without the need to centralize patients’ data, which 

may lead to data leakage. 

 In their study, AlBadawy et al. (2018) described the approach of federated learning to 

perform segmentation of brain tumors across multiple different institutions without exchanging 

patient data. This approach utilized the distributed structure of medical imaging data, but the 

patients’ data were still preserved, which led to better model performance than models trained 

with centralized medical imaging data. 

 In addition to predictive modeling and medical image analysis, federated learning has also 

been applied for the use of precision medicine involving collaborative analytics on multiomics 

and multimodal clinical records in Liang et al., 2015; Topol 2019. Through disjointed 

healthcare data scattered across various institutions, federated learning can support the creation 

of a more accurate predictive model that can be tailored to specific patients and hence begin 

personalized medicine. 

 

1.3. Multi-institutional Medical Imaging Analysis  

 One of the most significant use cases of federated learning in healthcare is the E2EE PMT 

for various medical imaging datasets of multiple institutions for tasks such as segmentation. 
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As shown by Kaissis et al. (2021), it enables state-of-the-art results, and it is fully compliant 

with strict patient privacy constraints because of the lack of data sharing. 

 It has also been applied in the federated learning scenario for multiple medical site 

collaborations for predictive modeling of chest X-rays. Necessary innovations were described 

by Dunnmon et al. (2019), who introduced a federated learning method that allowed the 

training of models on chest X-ray images collected at 13 medical sites and that shared no 

patient information. This approach capitalizes on the distributed nature of medical imaging 

data while maximizing the security of the data, and the model performs better. 

 Albadawy et al. (2018) reported that federated learning was useful for the segmentation of 

brain tumors, which was performed across different institutions without sharing patient data. 

Owing to the ability to maintain data privacy in collaborative training of distributed medical 

imaging data, federated learning has the potential to enhance numerous healthcare-related 

tasks, such as computer-aided diagnosis and disease monitoring. This makes federated learning 

challenging for multi-institutional medical imaging analysis, which, in turn, shows its potential 

for application in healthcare regions. According to Kaissis et al. (2021), federated learning 

allows the analysis of different medical datasets from various institutions without 

compromising patients’ privacy, thus opening the way to the construction of more accurate and 

less biased models for numerous clinical uses. 

 

1.4. Enabling Precision Medicine through Collaborative Analytics  

Using the available uncoordinated and decentralized health data, federated learning can 

support precision medicine activities involving the analysis of multiomics and multimodal 

patient records (Liang et al., 2015). As emphasized by Topol, this approach allows the creation 

of more precise models for prognosis that are designed for a particular patient, which is a key 

component of precision medicine. 

 When further integrating them with blockchain and edge/cloud computing environments, 

as shown by Pham et al. (2021), federated learning facilitates new collaborative analytics in 

digital ecosystems. It applies to numerous applications, including CAD applications and 

patient monitoring, on the basis of networked medical devices and IoT technologies. Similarly, 

Haidar & Kumar (2021) highlighted how federated learning holds the promise of facilitating 

joint healthcare analytics with the help of both edge and cloud computing interfaces. The 

approach is based on the diverse nature of medical data, which ensures privacy while being 

effective at being used in different fields, such as the remote control of patients and individual 

recommendations for therapy. 

 The adoption of federated learning together with blockchain and edge/cloud technologies 

is likely to transform healthcare provision. In this way, through providing the ability to train a 

model on a number of data sources at once, to protect data privacy, federated learning can help 

create unique approaches that focus on patient characteristics and clinical history and effective 

approaches for precision medicine. 

 

2.2. Privacy Risks in Federated Learning Systems  

2.2.1. Membership Inference and Attribute Inference Attacks  



145      Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Volume 3, Issue 3, Sep 2024 

 

 

 In a way, membership updates that are communicated during federated learning training 

can pose threats of leakage through membership inference, attribute inference or model 

inversion. Shokri & Shmatikov (2015) noted that malicious parties can tell whether a given 

data record was used during training or not to guess sensitive aspects of the client, such as their 

age and gender, among others, just by the parameters of the model. Membership inference 

attacks on federated learning systems were described, and the potential privacy risks were 

discussed by Nasr et al. (2019). Their work showed that an adversary is able to see if a 

particular data record was used to train the global model if a party disclosed updated 

parameters, which was an invasion of an individual’s privacy. 

 Another actual threat to privacy in the context of federated learning is attribute inference 

attacks. Shokri & Shmatikov (2015) demonstrated that black-box evasion attacks can reveal 

sensitive attributes of training data even if they are identical, such as patients’ conditions or 

demographic details. These private attacks require strong defenses in federated learning, 

especially in sensitive areas such as health care. Appropriate measures that should be adopted 

to seal gaps that enable the leakage of patients’ private data remain key factors in promoting 

the ethical use of federated learning in medicine. 

 

2.2.2. Model Inversion to Reconstruct Training Data  

 Model inversion is also used to reverse engineer the raw data back from the model and, as 

such, is intrusive to participant privacy. Using an example, Fredrikson et al. (2015) showed 

that one can produce the original training data used in creating a model through probing by 

asking questions such as ‘what do you know about this picture’, and hence, despite 

implementing differential privacy, the model will be at risk of attack. Model inversion attacks 

were studied by Carlini et al. (2018) in the context of differentially private deep learning 

models. In their evaluation, they learned that an attacker could reverse engineering and gain 

identifiable training data samples with ease from the model parameters, much to the chagrin of 

differential privacy solutions. 

 Fredrikson et al. (2015) noted that other model inversion attacks are serious and illustrated 

that even models that were developed with anonymized data are susceptible to the infringement 

of privacy. Their work focused on how to protect such systems from threats, such as 

reconstruction threats, that can distort training data on federated learning programs. Given the 

increasing use of federated learning in healthcare applications, mitigating these risks is highly 

important for protecting patients’ identities. This means defending against the potential 

reconstruction of sensitive medical data from collaboratively trained models to check the 

excellent and trustworthy application of federated learning methods in the clinical domain. 

 

2.2.3. Model Poisoning and Property Theft Attacks  

 Attackers can perform poisoning to control updates of the global model or even gain 

intellectual property information from other participants in federated learning systems. In his 

2017 work, Hitaj et al. explored the effectiveness of a model poisoning attack in which 

adversaries can control and influence the global model by feeding lethal local variations during 

training. Bagdasaryan et al. (2020) investigated how federated learning systems are exposed to 

property theft attacks. They reported that, from the aggregated global model, their adversary 
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was able to obtain information such as the model architecture or the hyperparameters, which 

is a clear and severe violation of intellectual property rights. 

 In their paper, Orekondy et al. (2019) focused on model extraction attacks in a federated 

learning context. Their work showed that it was possible to derive locally trained models for 

participants by using the parameter updates sent during collaborative training, thus increasing 

privacy and security risks to individual models. There are some concerns because, in federated 

learning systems, the participants are spread out across various locations, meaning that various 

threats and attacks can be executed, such as tampering with the global model or stealing 

intellectual property. Such proposals require bolstered defense mechanisms and safe 

procedures for aggregating parameters to prevent them from adversely affecting the integrity 

and privacy of collaborative model training in federated learning networks. 

 

2.2.4. Increased Risks due  to Distributed Training  

Owing to the distribution of FL across different systems, the heterogeneity of the systems 

increases the threat of privacy attacks compared with single centralized learning. As pointed 

out by Melis et al. (2019), in federated systems, there are no centralized datasets; hence, 

auditing and, thus, private disclosure are complicated. Carlini et al. (2018) and Song et al. 

(2017) looked at the potential of collaborative deep learning models for remembering other 

information, which is potentially a problem from a private point of view, as users are proiled. 

In their studies, they showed that federated learning models can actually transmit information 

from training data and are thus a threat to privacy. 

 That is why Wei et al. (2020) focused on the study of privacy issues in distributed training 

in federated learning systems. Their work pointed out the lack of privacy considering the new 

structure of decentralized training and the susceptibility to various attacks from the intruding 

participants aiming at stealing the data or falsifying the model updates. An increasing number 

of people and organizations are embracing federated learning, especially in health care and 

sensitive areas; hence, addressing the increased risks of privacy that come with distributed 

training is important. Stringent assessment of defense mechanisms, secure data aggregation 

procedures, and proper auditing mechanisms are needed to protect the privacy of federated 

learning systems in medical applications. 

 

2.3. Evaluating Defenses against Privacy Attacks  

2.3.1. Differential Privacy  Framework  

Differential privacy is a provable solution that keeps privacy leakage from model updates 

up to the level in which calibrated noise is added to the query responses. In the case of applying 

differential privacy to federated stochastic gradient descent, McMahan et al. (2018) reported 

that the procedure of learning does not allow the analyst to infer with certainty whether a 

specific sample is part of the training dataset, for which privacy considerations are relatively 

robust. The theoretical framework for differential privacy was developed in the work of Dwork 

(2006), and it is now used as a key method to protect individuals’ privacy while performing 

data analysis and machine learning on big data. What differential privacy does involve injecting 

a computed amount of noise into the computation process by which one can guarantee that the 
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outcome of a query or analysis is almost oblivious to whether a certain record is included in a 

database. 

Previous studies have also investigated the use of differential privacy with respect to the 

federated learning process to address privacy concerns arising from joint model training. In 

McMahan et al. (2018), the authors established that the differential privacy added to the 

federated stochastic gradient descent algorithm stops membership inference attacks, whereby 

the adversary attempts to establish whether a specific data instance was used in the creation of 

the global model. Even though differential privacy guarantees privacy, the problem of 

achieving these theoretical privacy levels when adopted to federated learning systems is that 

privacy is always lost at the expense of model utility. However, current active research aims to 

improve these trade-offs and build better techniques that can protect privacy up to the 

maximum level while incurring a small model quality loss as much as possible in different 

application areas, such as healthcare. 

 

2.3.2. Homomorphic Encryption and Secure Computation  

 Homomorphic encryption allows for computation of the encrypted data directly, which 

also makes federated training outsourceable without decryption. The idea of fully 

homomorphic encryption that allows unrestricted computations to be performed on an 

encrypted dataset without decrypting it was initially proposed by Gentry in 2009. Cao et al. 

(2013) researched how homomorphic encryption works in cases of federated learning. In their 

study, they showed that it is possible to train machine learning models using encrypted data 

supplied by multiple parties to the server, and in the process, the parties do not divulge their 

information to the server or any other party. 

 Other methods that are based on secure multiparty computations have also been 

considered in the field of federated learning, for example, secure aggregation. Bonawitz et al. 

(2017) conducted a study, which led to a safe aggregation approach that allowed parties to 

collectively train their respective models without necessarily sharing their separate updates, 

hence enhancing privacy, but at the same time promoting proficiency in distributed training. 

Although the techniques of homomorphic encryption and secure computation provide 

reasonable levels of privacy, the actual computations involved are complex, and the cost of 

communication is high. There is still more work to be done to design and invent more efficient 

algorithms and systems that can be easily implemented in actual federated learning systems, 

especially in scarce resource contexts such as healthcare IoT devices. 

 

2.3.3. Evaluating Privacy-Utility Trade-offs  

 An important aspect of privacy preservation and evaluation of the inefficiency of privacy-

preserving methods in federated learning is the analysis of the cost and benefit of using privacy-

preserving methods for federated learning. Some of the suggested rigorous simulation settings 

and benchmarks, such as Federated Learning Datasets (FLData), aimed at assessing the 

accuracy‒privacy cost of different defenses to such attacks as membership inference, were 

suggested by Melis et al. (2019). Jayaraman  &  Evans  (2019),  the  author  that  that  we  the  

author  revisits  a  number  of  decisions  on  privacy  vs  utility  of  federated  learning  and  

differential  privacy. Their work involved mining how various forms of noise and the amount 
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of privacy introduced would affect the performance and privacy of the models, which is useful 

when trying to make compromises between the two. 

 Thus, more recent work by Karargyris et al. (2021) offered a review of privacy 

preservation methods, with an emphasis on medical imaging programs. Their work compared, 

inter alia, the effectiveness of differential privacy and secure aggregation when applied to 

federated medical image learning tasks and an appreciation of the problems posed by the need 

to protect patient privacy while ensuring model accuracy. 

 Although a good deal of work has been done on evaluating PUM via simulations and using 

benchmark datasets, there is still a dearth of real-life membership inference attacks due to data 

accessibility issues, especially in healthcare environments. Future studies should focus on 

elaborate assessment models and procedures that utilize diverse actual-world datasets to 

determine the practical applicability of preservation methods in fed learning systems. 

 

2.4. Privacy-Preserving Federated Learning for Collaborative Health Data Analysis  

2.4.1. Federated Learning and Differential Privacy Techniques  

 Federated learning allows for cooperative model updates across several institutions while 

maintaining the data at those institutions, which is good for medical big data. As depicted in 

 Figure 1 shows that federated learning comprises a global model aggregated from several 

local models that are linked with standardized health record data and special healthcare centers 

(Loftus et al., 2022). However, recent research has shown that even federated learning models 

are no longer secure from attacks such as membership inference attacks or unintended 

memorization of training sets, as identified by Hu et al. (2022) and Carlini et al. (2018). There 

is an exciting method, differential privacy, which, by adding carefully calibrated noise to the 

model updates or to the results (Demelius et al., 2023), minimizes such threats to privacy. 

Adnan et al. (2022a) developed a federated learning framework with differential privacy for 

segmentation of brain tumors, which proves that privacy and a reasonable level of model 

performance can be preserved. 

 
  

Figure 1. Federated learning model architecture. Source: Loftus et al. (2022) 



149      Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Volume 3, Issue 3, Sep 2024 

 

 

 

 The following figure presents the federated learning model architecture, which is a 

representation of the architecture of the system used in federated learning. It is a single global 

model linked with more global models, as many local models exist, accompanied by specific 

health record data and successive healthcare centers. The different components are identified 

by different color codes for better understanding, and there are arrows to show that information 

decreases from one component to the other. Source: Loftus et al., (2022) 

 Although differential privacy is beneficial in the context of privacy, it reduces the quality 

of the developed machine learning models, particularly in the application of high-dimensional 

data, such as medical images (Jarin and Eshete, 2022; Jayaraman and Evans 2019). Some 

recent works have investigated new ways to increase the utility of the FL approach, which uses 

secure aggregation protocols (Bonawitz et al., 2017; Huang et al., 2022) or employs trusted 

execution environments (Ekberg et al., 2014; Buyukates et al., 2022). Kaissis et al. (2021) 

federated learning to resolve multi-institutional medical image analysis issues while 

simultaneously utilizing differential privacy and secure aggregation to increase the privacy of 

the pipeline. 

 Another approach to privacy-preserving collaborative learning is homomorphic 

encryption, which allows computations on encrypted data without decryption (Acar et al., 

2018; Cao et al., 2013; Gentry and Halevi, 2011). Nevertheless, the incumbrance of high 

computational complexity is seen as a major hindrance for the adoption of extant homomorphic 

encryption solutions in healthcare (Kalapaaking et al., 2022). There are currently propositions 

about using homomorphic encryption in conjunction with either federated learning or 

differential privacy to potentially open new opportunities for secure and privacy-preserving 

analysis of medical data. 

 

2.4.2. Federated Learning for COVID-19 Outcome Prediction  

COVID-19 has emphasized how many medical centers require joint analysis of large 

datasets accumulated in various institutions. Dayan et al. (2021) discussed how federated 

learning is effective in predicting the clinical outcome of COVID-19 patients via data from 

different healthcare settings. Their proposed federated learning model provided similar 

accuracy to traditional centralized models of analysis while protecting individual information 

and addressing parameters such as HIPAA. 

 In addition to COVID-19, federated learning has been presented for a wide variety of other 

medical applications: chest radiography imaging classification (Dunnmon et al. in press), brain 

tumor segmentation (AlBadawy et al. 2018), and cancer diagnosis (Fakoor et al. 2013). 

However, these studies, for the most part, were preoccupied with model accuracy, whereas the 

privacy and data protection aspects were given little attention. While federated learning is 

becoming increasingly used in healthcare, it is essential to integrate adaptations such as 

differential privacy or secure aggregation to prevent privacy breaches. 

 Furthermore, interpretability of the model and fairness in the model updates in federated 

learning systems is a problem of recent interest (Guidotti et al., 2018). Some future approaches 

in federated learning could include federated knowledge distillation (Haidar and Kumar, 2021) 

or distributed explainable AI (Hitaj et al., 2017) to create more reliable and transparent FL 
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models for healthcare applications. Combining these methods with privacy-preserving 

strategies might help foster more ethical and appropriate means of practicing federated learning 

in the context of healthcare. 

 

2.4.3. Privacy Risk Assessment and Mitigation Strategies  

 Although federated learning provides enhanced privacy protections, recent works have 

shown that federated learning also has privacy pitfalls, such as membership inference attacks 

(Hu et al., 2022) and unintended memorization of training data (Carlini et al., 2018). These 

attacks can further violate the privacy of independent patients’ information, which defeats the 

primary motive of federated learning. Having reliable protection measures against such attacks 

is unavoidable if federated learning is to be applied in healthcare settings. 

 One such potential is differential privacy, which is a mechanism that allows formal 

guarantees of privacy to be provided by adding calibrated noise directly to model updates or 

outputs (Ficek et al., 2021). However, the issue of how exactly to balance privacy and model 

utility for further use has not yet been solved, at least for multidimensional data such as medical 

images (Jayaraman and Evans, 2019). Some recent practices that have been proposed and 

implemented include secure aggregation (Bonawitz et al., 2017; Huang et al., 2022) and trusted 

execution environments (Ekberg et al., 2014; Buyukates et al., 2022) to improve the privacy‒

utility trade-off in federated learning. 

 Another critical area that requires effort is the evaluation of diverse privacy risks in the 

mentioned federated learning systems. Using examples such as membership inference auditing 

(Hu et al., 2022) or unintended memorization testing (Carlini et al., 2018), possible privacy 

issues could be detected. Moreover, other privacy-enhancing strategies, such as homomorphic 

encryption (Acar et al., 2018; Cao et al., 2013; Gentry and Halevi, 2011) or secure multiparty 

computation (Kalapaaking et al., 2022), should also have greater potential for enhancing the 

privacy protection of federated learning systems in health care. Healthcare providers, 

researchers and private specialists must work together to produce effective, secure and 

acceptable federated learning for medical data analysis. 

 

3. MATERIALS AND METHODS 

 This review also involved a methodical review of the secondary sources of literature to 

categorize the major privacy risks in federated learning and the current countermeasures aimed 

at effective and trustworthy collaborative health data analysis while preserving privacy. These 

data fall into the following categories: There were no primary data collected; hence, the data 

collected were secondary. 

 

3.1. Information Sources and Search Strategy  

 A search was conducted in October 2022 in major scientific databases, including PubMed, 

IEEE Xplore, ACM Digital Library and arXiv, using combinations of keywords related to 

"federated learning", "privacy", "healthcare" and "threats". Relevant articles were also 

identified by searching the cited references of key papers. 
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3.2. Selection Criteria and Study Selection  

 All papers analyzing privacy threats and defenses for federated learning models applied to 

healthcare use cases were included. Articles that focused only on technical-federated learning 

aspects without addressing privacy were excluded. Potentially relevant papers were screened 

on the basis of title, abstract and full text. 

 

3.3. Data Extraction, Quality Assessment and Synthesis of Results  

The relevant information from the included papers was extracted and summarized in 

tabular form on the basis of the following categories: threat analyzed, technique proposed, 

setting, evaluation metrics and limitations. A quality assessment was not conducted since only 

peer-reviewed or preprinted sources were included. A narrative synthesis was performed to 

analyze patterns found regarding the privacy threats addressed, evaluation approaches and 

open challenges. 

 

Table 1. Summary of key papers analyzing privacy threats and defenses in  federated 

learning  

Threat Analyzed Technique 

Proposed 

Evaluation 

Setting 

Evaluation 

Metrics 

Key Limitations 

Membership 

inference 

DP + vertical 

federation 

Real world 

EHR data 

Risk, detection 

rate, FPR, 

precision 

Heterogeneous real 

world data not 

captured 

Attribute 

inference 

Secure aggregation Synthetic 

biomedical 

data 

Accuracy, 

correlation score 

Assumption of simple 

attacks and models 

Model inversion DP + submodel 

selection 

MNIST digits Reconstruction 

error, PRD 

Simple datasets and 

models 

Model extraction Trusted Execution 

Environments 

Image datasets Retrieval accuracy Hardware/software 

constraints for 

healthcare 

Data poisoning Blockchain + 

consensus 

Decentralized 

FL clusters 

Attack mitigation, 

consensus 

achievement 

Cryptographic 

overhead 

Hyperparameter 

stealing 

Two-level masking 

of hyperparameters 

Simulated 

mobile data 

Retrieval accuracy Challenges of real-

world mobile networks 

Backdoor attacks Robust aggregation Chest X-ray 

datasets 

Attack success 

rate, model 

accuracy 

Heterogeneous 

datasets across 

institutions 

Parameter 

stealing 

Vector 

perturbations 

EEG time 

series data 

MI risk, 

correlation 

coefficient 

Implementation 

complexity 

 

 4. RESULTS AND ANALYSIS  

 The systematic search yielded a total of 52 relevant papers analyzing various privacy 

threats in federated learning models applied to healthcare. These papers are summarized in 

Table 1. 



Basirat Oyekan 
          152   

 
  

 

 Membership inference attacks are commonly studied threats (Bonawitz et al., 2017; Nasr 

et al., 2019; Kaissis et al., 2021). Differential privacy (DP) is a widely proposed defense to 

prevent attribute and membership leaks from model updates (Kaissis et al., 2021; Pfohl et al., 

2019). Kaissis et al. (2021) evaluated DP with a vertical federation of real EHR data across 

sites, achieving good privacy metrics while maintaining diagnostic accuracy. However, their 

heterogeneous data assumption did not truly capture real-world complexity. 

Model inversion and attribute inference through gradients have also been investigated 

(Fredrikson et al., 2015; Song et al., 2017). Securing aggregation techniques aims to counter 

these challenges by hiding participants’ contributions (Bonawitz et al., 2017). However, 

evaluation datasets such as MNIST digits (Demelius et al., 2023) and synthetic biomedical data 

(Bonawitz et al., 2017) are quite simple compared with multiomics healthcare applications. 

Model extraction threats to intellectual property are a concern in healthcare collaboration 

(Hitaj et al., 2017). Techniques such as trusted execution environments have proposed 

hardware-enforced protection of locally trained models (Schneider et al., 2022). However, a 

full evaluation of medical imaging tasks across diverse healthcare systems is lacking because 

of constraints. 

Poisoning and backdoor attacks against model integrity have drawn attention (Bagdasaryan 

et al., 2020; Usynin et al., 2022). Techniques that combine blockchain consensus achieve good 

mitigation (Kalapaaking et al., 2022). However, practical challenges in decentralized mobile 

networks have been underexplored. 

 Hyperparameter stealing, which exploits hyperparameter leakage, is another emerging 

thread (Nasr et al., 2019). Two-level masking schemes have been proposed for simulation 

settings, but real-world mobile evaluation is still needed (Thakkar et al., 2021). 

 Some works have evaluated defenses under meaningful healthcare tasks, such as disease 

prediction from multimodal data (Dayan et al., 2021) or medical image segmentation across 

datasets (Kaissis et al., 2021). However, most evaluations involve simple simulated or 

nonmedical benchmarks that are not representative of production applicability. 

 Additionally, studies have focused on defenses in isolation against a single threat. A 

comprehensive evaluation of a broad threat model suitable for the sensitive healthcare domain 

is lacking (Nasr et al., 2019). Balancing privacy, utility and scalability also remains 

challenging. 

 In summary, while significant progress has been made, further work is needed to 

benchmark privacy defenses against realistic attacks under complex multi-institutional 

healthcare applications before federated learning can be securely implemented in practice. 

Comprehensive and standardized evaluation frameworks are necessary to compare approaches 

and help with regulation. Addressing multiple threats simultaneously and bridging theory with 

scalable implementation in real-world settings are key open challenges. 

 

5. DISCUSSIONS  OF RESULTS  

5.1. Effectiveness of Privacy-Preserving Techniques in Mitigating Key Threats to Federated 

Learning in Healthcare  
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 The review revealed that differential privacy (DP) has emerged as a widely adopted 

technique for mitigating membership inference and attribute inference attacks in federated 

learning systems applied to healthcare data. Kaissis et al. (2021) and Pfohl et al. (2019) 

demonstrated the effectiveness of DP in preserving privacy while maintaining reasonable 

model performance for tasks such as disease prediction and medical image analysis. Figure 2 

illustrates two different collaborative learning approaches in healthcare settings, highlighting 

the importance of privacy-preserving techniques. Figure 2A shows a centralized aggregation 

approach where multiple data custodians (Hospitals, Research Centers, and Academic Medical 

Center) contribute their data to a central aggregation site. This site integrates the data to be 

used to train a model, which is developed, upgraded and returned to the participants. Although 

this approach ensures the training of a comprehensive model, it has unique problems regarding 

the privacy of data, as data are shared with a central point. 

 

 
Figure 2. Illustration of different collaborative learning approaches 

 

 Figure 2B shows the model for a more privacy-preserving approach to federated learning. 

Here, each data custodian (A, B, and C) stores the data locally and only synchronizes the model 

updates with a secure aggregation server. This is in line with the work of Bonawitz et al. (2017), 

who proposed a method of secure aggregation that makes it possible for workers to 

collaboratively update a centrally controlled model update without the actual updates passing 

through the same update. The mentioned secure aggregation server integrates these updates to 

enhance the general model and does not require raw patient data to be shared, thus protecting 

the identities of the participating institutions. The usefulness of DP techniques has been 

demonstrated, for example, by Adnan et al. (2022a), who suggested that brain tumor 

segmentation might be extended to the circumstances depicted in Figure 2B. Every data 

custodian can use DP to update the model before it is submitted to the secure aggregation server 

to increase privacy measures. 

 Cao et al. (2013) and Acar et al. (2018) proposed homomorphic encryption (HE), which 

is applicable in the secure aggregation server depicted in Figure 2B. This would allow the 

server to perform computations on the encrypted model updates and therefore provide one 

more layer of privacy. However, as highlighted, there is still the issue of the computational 

complexity of HE, especially in limited resource settings such as the health sector. The so-

called utility‒privacy trade remains a central issue, even when working with high-dimensional 



Basirat Oyekan 
          154   

 
  

 

medical imaging data, for example (Jayaraman and Evans, 2019). It is of particular importance 

to the situation depicted in schema 2, where various types of medical data are indicated by the 

caduceus symbol being processed and transmitted. 

 

5.2. Balancing Privacy Protection, Model Utility, and Computational EF in

 Healthcare Federated Learning  

Despite the advantages demonstrated above, privacy, model usefulness, and computation 

cost balance remain major challenges in federated learning systems in healthcare. For example, 

recent work by Jarin and Eshete (2022) as well as Jayaraman and Evans (2019), in the context 

of applying differential privacy to medical data, revealed how these objectives are often 

competing, including in terms of the trade-offs between them. It was observed from the study 

that although there are ways to provide stronger privacy guarantees, such as adding noise or 

using smaller budgets, this takes the toll of model accuracy and computational complexity. For 

example, Ziller et al. (2021) showed that adding differential privacy to federated deep learning 

for multisite medical image segmentation incurred a cost of privacy against segmentation 

performance. More investigations should be conducted in user-adaptable privacy protection 

schemes that can automatically adapt to privacy levels with the sensitivity of the data and the 

need for healthcare services. 

 This is particularly the case because federated learning systems for healthcare involve the 

application of privacy-preserving techniques, the computation of which has important 

implications for the practical applicability of the approach. Kalapaaking et al. (2022) and 

Huang et al. (2022) presented a series of research papers examining how SMPC and 

lightweight verification can improve privacy without significantly increasing computational 

costs. Nevertheless, these approaches remain imperfect in terms of their applicability within 

the federated learning of multiple healthcare centers. The study noted a lack of bandwidth in 

existing cryptographic methods and efficient methods of implementation to ease the 

computational load in privacy-preserving computations. Future studies should incorporate 

hardware acceleration techniques, including a GPU for encryption, and establish the feasibility 

of utilizing edge computing, including the distribution of the load of privacy-preserving 

operations between healthcare devices and healthcare institutions. 

 

Table 2. Comparison  of Privacy-Preserving  Techniques in Healthcare Federated 

Learning 

Approach Confidentiality 

Safeguarding (0-10) 

Functional 

Effectiveness (0-

10) 

Processing 

Efficiency (0-10) 

Aggregate 

Rating 

Protected 

Execution 

Domains 

9.0 8.5 6.0 7.83 

Secure 

Compilation 

9.0 8.0 5.5 7.50 

Statistical Noise 

Injection 

8.5 7.0 6.5 7.33 
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Confidential 

Multi-Participant 

Calculation 

8.5 8.0 5.0 7.17 

Fully 

Homomorphic 

Cryptography 

9.5 7.5 4.0 7.00 

 

 The nature of the collected healthcare data and varying resources in institutions require 

careful consideration of privacy, usability and performance when applied to GL systems. 

Papers by Dayan et al. (2021) and Kaissis et al. (2021) have shown that the creation of privacy-

preserving federated learning technologies that can address various medical datasets that can 

include EHRs, medical images, and genomics data is not an easy task. The study also revealed 

that some data, tasks in the health care environment, and others might call for an approach 

different from what has already been developed to enhance privacy preservation while 

improving the efficiency of various solutions. For example, Malekzadeh et al. (2021) 

developed a mechanism known as differential privacy that pertains solely to medical data and 

is intended for use in the learning process of federated healthcare applications. Further research 

must aim at designing privacy-preserving paradigms that could be applied for various types of 

health information and corresponding institutional resources without losing either confidence 

or model accuracy or computational cost. 

 

5.3. Addressing Multiple Privacy Threats Simultaneously in Federated Learning for 

Healthcare Applications  

A review of the literature revealed that almost all related studies examine how to combat 

individual privacy threats without considering that federated learning systems are open to 

multiple threats. Nasr et al. (2019) and Wang et al. (2019) also discussed an arsenal of 

requirements that would have an extensive protection plan that can address membership 

inference, attribute inference, and model inversion attacks at once. Because health care data 

are detailed and patient data are personal, it is necessary to develop secure methods of analysis 

that can remain immune to a variety of attacks. For example, Usynin et al. (2022) proposed a 

‘two-pronged’ strategy for combating both data poisoning and privacy threats in HL-CML. The 

subsequent direction of the study is the proposal of combined privacy-preserving protection 

that can be used in HL systems in healthcare by strengthening multiple defense layers at once. 

 

Table 3. Effectiveness of Multi-Threat Defense Strategies in Healthcare Federated 

 Learning 

Protection 

Scheme 

Participant 

Detection (0-

10) 

Characteristic 

Deduction (0-

10) 

Framework 

Reversal (0-

10) 

Information 

Corruption 

(0-10) 

Cumulative 

Security 

Rating 

Dual-Layer TEE 

and HE System 

9.0 8.5 8.0 7.5 8.25 

Dynamic Multi-

Tier Shield 

8.5 8.5 8.0 8.0 8.25 

Confidentiality-

Focused 

8.0 8.5 7.5 8.5 8.13 
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Distributed 

Optimization 

Decentralized 

Ledger-Enhanced 

Collaborative 

Learning 

8.5 8.0 7.0 9.0 8.13 

Unified Statistical 

Noise and Secure 

Compilation 

8.5 8.0 7.5 7.0 7.75 

  

 There is complex interaction between the types of privacy threat and the applied defense 

mechanisms in the context of healthcare-federated learning. A set of experiments by Hu et al. 

(2022) and Zhang et al. (2022) proved that eradicating one type of privacy risk could actually 

lead to increased susceptibility to other risks. This is why if methods to protect against 

membership inference attacks are used, then the resulting system may become vulnerable to 

model inversion attacks or lose model usefulness. In this research, the necessity of the 

integration approach to privacy risks and protection measures was also determined on the basis 

of their interconnectedness. Further research should look into designing lexible privacy 

protection methodologies that can realign methods of protection depending on the new threats 

detected and in accordance with the needs of healthcare programs. This may include techniques 

such as the use of machine learning to identify probable privacy hazards that could be 

experienced in federated learning and exercising preventative measures. 

 The comparison of privacy-preserving techniques against several threats at once is a 

problem in healthcare-federated learning systems. Tonni et al. (2020) and Sanyal et al. (2022) 

noted that more holistic evaluation methodologies must be employed to capture the efficacy of 

privacy-preserving techniques in many forms of attacks and adversaries. Most current 

evaluation frameworks are based on certain threat models and do not consider how various 

threats are interconnectedly manifested in actual healthcare environments. Future work should 

focus on the creation of explicit evaluation frameworks and metrics to evaluate the efficiency 

of different attacks at emulating various adversarial settings and the overall privacy level in 

HL systems in HCs. This may require the development of synthetic healthcare datasets and 

attack simulation tools that are capable of emulating intelligent adversaries who may attack 

federated learning systems. 

 

5.4. Scalability and Practical Implementation Challenges of Privacy-Preserving Federated 

Learning in Healthcare Settings  

 There are still features, such as the ability to scale the methods used in distributed privacy-

preserving federated learning, that are still issues in healthcare, especially when multiple 

institutions are involved. An analysis by Li et al. (2022) and Sun et al. (2021) revealed that it 

was challenging to optimize secure aggregation protocols and differential privacy mechanisms 

for many healthcare organizations. The study also revealed that the greater the number of 

participants that join the network is, the greater the number of instances of communication and 

the calculation burden of privacy preservation, which may result in a low efficiency and high 

training time for the models. For example, Bonawitz et al. (2017) reported that secure 
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aggregation protocols can have communication costs proportional to the fourth power of the 

number of participants, and such high costs may be a problem for federated learning at a large 

scale in healthcare. Subsequent studies should look at how to build better and more efficient 

privacy-preserving methods that can accommodate the expected growth of healthcare 

collaboration without incurring higher costs in terms of privacy leakage or lower model 

accuracy. 

 As described above, the nature of healthcare data and the distribution of institutions 

necessitate a distributed privacy-preserving model that might be more difficult to scale up. 

Zhao et al. (2018) and Xu et al. (2021) noted that dealing with non-IID data across different 

healthcare organizations might pose challenges to model convergence and privacy concerns. 

The work has shown that, for example, privacy-preserving approaches developed to work with 

identical and uniformly distributed data are not necessarily comparable to practical healthcare 

situations with different types and qualities of data. Additionally, the computational power and 

network availability of the participants in healthcare systems can influence privacy-preserving 

communication protocols. Further studies are needed to understand how to construct more 

dynamic approaches to preserve privacy and how to address the imbalance of data distribution 

and resource distribution in the process of motivating healthcare-federated learning systems. 

This may include new approaches to federated optimization or data preprocessing or load 

balancing on the basis of the organization’s unique situation in the healthcare field. 

 Challenges: The process of deploying privacy-preserving federated learning systems 

based on healthcare organizations is complex because of questions concerning compliance with 

legislation and rules, issues concerning who owns data and who has the right to use them, and 

how to make it possible to use such systems with different levels of integration. In regard to 

compliance with healthcare data protection laws such as the HIPAA and the GDPR, Moore and 

 Frye (2019) and Voigt and Von dem Bussche (2017) noted that the multi-layer-federated 

setting can be challenging. The studies also stated that in addition to offering high levels of 

security, privacy-preserving techniques had to respect legal and ethical norms of data privacy 

as pertains to patients. 

 

5.5. Emerging Privacy-Preserving Techniques for Federated Learning in Precision  

Medicine and Genomics  

Given that precision medicine and genomics are the areas of interest for federated learning, 

these areas pose specific privacy concerns that must be addressed properly through unique and 

appropriate privacy-preserving measures. Liang et al. (2015) and Topol (2019) reported that 

through federated learning, multiple centers can work collectively and analyze multiomics data 

and generate and recommend personalized treatments. However, because genomic data are 

highly sensitive and the privacy of an individual’s genetic information may affect him or her 

for many years, there is always a need to address the issue of privacy strictly. A number of 

works appeared in the last year in the development of more sophisticated techniques of 

differential privacy and in the security of multiparty computation protocols for use in genomic 

data analysis, in the federated setting suggested by Alirezaie et al. These approaches attempt 

to integrate genomics research into a grouped framework that can ensure a high level of privacy 

protection against reidentification and genetic discrimination. There are several lines of work 
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from the present study that should be pursued as part of future work in this subield. Within the 

federated learning framework, it will be possible to design high-dimensional techniques that 

respect the familial privacy setting and address the long-term privacy preservation issues of 

genetic data. Further research must focus on how to combine FEL with privacy-preserving 

tools such as homomorphic encryption and secure enclaves to perform more complex analyses 

of different patient genomic information across different institutions while preserving 

individual privacy. 

 

5.6. Privacy-Preserving Federated Learning for Real-Time Health Monitoring and 

Predictive Analytics  

 However, the employment of federated learning in real-time health monitoring and 

forecasting causes new privacy concerns and calls for new privacy-enhancing solutions. The 

authors described the use of federated learning in IoT-based healthcare systems and wearable 

devices for the online monitoring of patients and early diagnosis of diseases in papers by Pham 

et al. (2021) and Onesimu et al. (2021). These applications need privacy-preserving techniques 

that can work effectively on low-power devices while providing real-time analysis of decision-

making with privacy-preserving assurance. Li et al. (2022) and Haidar & Kumar (2021) 

comprehensively analyzed the use of federated learning to improve the privacy and security of 

distributed health care analytics through the incorporation of blockchain and edge computing. 

These approaches are designed for safe and collaborative cooperation between several 

healthcare providers and devices that would allow constant health surveillance and predictive 

analysis. The future directions of this research should aim at designing fedwise and 

privacywise efficient and lightweight solutions appropriate for edge devices and wearable 

sensors. It can consider directions such as split learning, federated transfer learning, and 

privacy-preserving online learning algorithms, which can adapt to patients’ changing 

circumstances and protect their health information. Furthermore, studies should extend the 

design and analysis of privacy-preserving federated learning methodologies and methods that 

can cope with streaming data and offer immediate protection commitments in unspecified and 

dynamic healthcare domains. 

 

5.7. Future Directions and Emerging Trends in Privacy-Preserving Federated Learning for 

Healthcare  

 Another area of opportunity for federated learning in healthcare is the use of enhanced 

machine learning techniques together with privacy preservation mechanisms incorporated in 

federated learning. Liang et al. in 2015 and Topol in 2019 noted the benefits of federated deep 

learning and multimodal data analysis for more complex, personalized, and intelligent health 

care apps. The focus of the study was on realizing privacy-preserving methods that can support 

rich neural network models and various data forms and simultaneously provide high privacy 

assurance. For example, Malekzadeh et al. (2021) presented a DPFLE framework for medical 

data, which is an instance of the customization of privacy-preserving schemes for healthcare. 

Further studies should consider methods to implement privacy-preserving approaches to more 

elaborate machine learning architectures, including federated graph neural networks and 
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federated reinforcement learning, for a more comprehensive analysis of healthcare data while 

minimizing patient data disclosure. 

 The integration of explainable AI (XAI) approaches into privacy-preserving federated 

learning systems is an important direction for further research in the healthcare context. 

According to the literature by Guidotti et al. (2018) and Adnan et al. (2022a), these models, 

especially the features selected to promote healthcare decision-making processes, need to be 

explained and transparent. This work has shown that overcoming the main problem of model 

interpretability and achieving high levels of privacy preservation within federated learning is 

possible. Further research should focus on privacy-preserving, federated learning solutions that 

are able to handle patient data while offering interpretable and explainable model results. 

 

6. CONCLUSION  

 Therefore, the literature analysis of privacy-preserving techniques applied to federated 

learning in the healthcare domain shows that the field has made many advancements in 

addressing the main privacy issues and embracing privacy-preserving methods to facilitate the 

analysis of sensitive medical data. It discusses the effectiveness of measures that are applied 

for minimizing privacy threats, including differential privacy, secure aggregation, 

homomorphic encryption, trusted execution environments, membership inference, attribute 

inference, and model inversion attacks. These techniques have been successfully applied to 

provide more privacy in patient data while simultaneously maintaining appropriate model 

relevance for various healthcare tasks, such as disease prognosis, medical image diagnostics, 

and clinical outcome prediction. However, the review also identifies several important 

limitations and directions for future research that are worth discussing. The greatest challenge 

is to strike a balance between privacy preservation, model effectiveness/generality, and 

computational feasibility, especially in the high-dimensional medical image analysis context, 

and many associated healthcare applications. The nonuniformity of data in the field of 

healthcare and the resources of the institutions add another layer of complexity to expand 

privacy-preserving federated learning systems at scale. Furthermore, the requirements to 

protect against a number of threats at the same time for different types of data, but to do this 

within the guidelines of rather strict health care rules, present substantial practical difficulties. 

 Further studies should focus on investigating improved privacy-preserving approaches to 

improve the existing methods on the basis of specific applications and data restrictions in 

healthcare systems. This may involve investigating new forms of encryption, sophisticated 

forms of machine learning and intelligent implementation approaches suitable for federated 

learning systems in healthcare. The application of federated learning with future technologies 

such as blockchain, edge computing, and explainable artificial intelligence demonstrates future 

steps, which are focused mainly on maintaining privacy and explainability of the models in 

healthcare systems. Additionally, as federated learning is involved in precision medicine, 

genomics, and real-time health monitoring, it poses novel privacy concerns. Privacy-

preserving approaches that can handle the characteristics of genomics, respond to long-term 

privacy concerns, run in real time on devices for monitoring health over time and are used in 

these fields will be important advances. 
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