
 

Introduction 

Embedded Intelligence (EI) in products or systems endows them with the capability to 

reflect on their operational performance. EI involves the integration of sensors, communication 

modules, and computational processing units into products or systems to achieve specific 

operational objectives. Recently, machine learning, deep learning, and artificial intelligence 

(AI) have been widely adopted across various platforms, imposing new requirements on 

existing computing systems and architectures. While these technologies can exist solely as 

software, they often necessitate hardware components to build standalone intelligent machines. 

This interplay between "intelligence" and embedded systems is crucial. 

There are several platforms for deploying machine learning, deep learning, and AI, 

including: (1) Graphics Processing Units (GPUs); (2) Field Programmable Gate Arrays 

(FPGAs); (3) Central Processing Units (CPUs); (4) Application-Specific Integrated Circuits 

(ASICs); and (5) Field Programmable System-on-Chip (FPSoC). Recent advancements in 

GPU architecture have significantly increased computational power. Originally designed for 

fast graphics rendering, GPUs feature hundreds of smaller cores optimized for parallel 

processing. Initially created to enhance video game responsiveness, GPUs have since 
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revolutionized the IT industry, extending their utility to a broad range of applications, including 

high-performance computing systems. 

GPUs serve as hardware accelerators, significantly speeding up the training and inference 

processes in machine learning, deep learning, and AI. Their core density and power efficiency 

make them suitable for meeting real-time requirements and the intensive computational 

demands of these technologies. Machine learning algorithms have been widely adopted across 

various hardware platforms, including GPUs, for their energy efficiency, compact form factor, 

and affordability. Modern smartphones incorporate hardware to accelerate machine learning 

algorithms, and software frameworks have been optimized for embedded platforms. 

Additionally, hardware accelerators like the edge Tensor Processing Unit (TPU) are becoming 

commoditized. 

Similarly, GPUs are extensively used to accelerate deep learning, proving to be highly 

effective for many applications. Emerging deep learning cloud services provided by AI service 

providers further boost the use of deep learning in numerous business-critical processes. Large 

companies' deep learning platforms offer customized hardware, including servers, storage, and 

networking communications, to support high computational workloads. However, centralized 

cloud environments for deep learning entail longer latency, higher energy consumption, and 

financial overheads. Consequently, research and development platforms often focus on cost-

effective GPUs for developing limited-scale computational clusters to handle diverse deep 

learning workloads. Recent trends, such as competitions like the "Low-Power Image 

Recognition Challenge" (LPIRC), emphasize a balance between performance accuracy, 

computational throughput, and power consumption, reflecting the growing focus on efficiency 

and effectiveness in AI development. 

Current development trends in GPU-based embedded intelligence (EI) are moving 

towards: (1) Utilizing lower precision arithmetic, such as shifting from 32-bit to 16-bit 

representations; (2) Exploiting operations on sparse matrices, where mechanisms like ZeroSkip 

can take advantage of the many zero weights in convolutional neural networks (CNNs), as 

discussed further in Section 3.6; and (3) Implementing binary neural networks (BNNs), which 

are deep neural networks (DNNs) using binary representations for weights and activation 

values, elaborated in Section 3.1. These advancements make deep learning approaches for 

small, power-efficient devices highly attractive across various domains. 

Examples of GPU-based EI in real-world applications with significant social impacts 

include predictive systems for disaster early warning and management (e.g., large-scale water 

supply systems management, flood and fire simulation and forecasting), and in the electronics 

industry (e.g., circuit solvers for electronic systems with numerous components). Further 

examples will be discussed in Sections 3 and 4. 

Currently, there is a lack of comprehensive surveys or reviews on GPU-based embedded 

intelligence research and development. Most reviews on machine learning, deep learning, or 

AI do not focus on hardware or embedded intelligence. This paper aims to fill this gap by 

providing a comprehensive review and several representative studies on the emerging and 

current paradigms in GPU-based EI research and development, with a focus on enabling 

technologies, applications, and challenges. 
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The overview and classifications of GPU-based EI research and development are 

summarized in Table 1. The research works are categorized as follows: (1) An overview and 

classification of GPU-based EI research, providing a full spectrum and concise summary of 

the paper’s scope; (2) A detailed discussion of various architectural technologies for deep 

learning techniques and applications; and (3) A detailed discussion of various architectural 

technologies for machine learning techniques and applications. This paper aims to offer 

valuable insights into the research area and encourage further development of GPU-based EI 

for practical deployment and applications. 

The remainder of the paper is structured as follows: Section 2 presents an overview and 

classification of EI research on GPUs. Sections 3 and 4 discuss GPU-based deep learning and 

machine learning techniques and applications, respectively. Section 5 concludes the paper. 

 

 

Overview and Classifications of EI Research on GPU Architecture 

Table 1 provides an overview and classification of research on GPU-based architecture 

technologies and applications for embedded intelligence (EI). This table offers a 

comprehensive view of the research landscape and serves as a concise summary of the paper's 

scope. The research is classified into two main descriptors: (1) GPU-based deep learning 

technologies for EI and (2) GPU-based machine learning technologies for EI. 

The first classification descriptor, GPU-based deep learning technologies for EI, is further 

divided into seven sub-descriptors:  

- Architecture framework and strategy 

- Scheduling and communication 

- Image processing and computer vision 

- Medical or health applications 

- Modeling or prediction 

- Convolution or performance analysis 
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- VLSI placement 

The second classification descriptor, GPU-based machine learning technologies for EI, is 

divided into two sub-descriptors: 

- Architecture platform 

- Applications 

The right column in the table lists the relevant works and references corresponding to each 

sub-descriptor, facilitating quick access for readers to the reviewed works. 

 

Deep Learning on GPU Architecture 

Deep learning approaches and techniques have been proposed and deployed to address 

many real-world problems such as bioinformatics, manufacturing, robotics, computer vision, 

and natural language processing. Some well-known deep learning models include 

convolutional neural networks (CNNs) like AlexNet and GoogleNet. Commercial cloud 

services offered by large technology companies have expanded the adoption of deep learning 

in various business-critical processes. Additionally, several deep learning frameworks such as 

TensorFlow (from Google), CNTK (from Microsoft), and Caffe2 (from Facebook) have been 

developed to facilitate training on GPU-enabled computational clusters. 

 

Architecture Framework and Strategy 

Ultra-deep neural networks (UDNNs) have been proposed to produce high-quality models. 

However, training UDNNs is resource-intensive and time-consuming, limiting training 

efficiency on modern GPUs due to limited DRAM capacity. To address this, the authors in [11] 

proposed a new architecture called AccUDNN, an accelerator designed to optimize limited 

GPU memory resources and speed up UDNN training. The architecture of AccUDNN consists 

of several interconnected modules: 

1. The Information Collector gathers features and attributes to build the performance 

model. 

2. The Performance Model Builder analyzes runtime characteristics and behavior in terms 

of computational performance, memory utilization, and communication requirements. 

3. The Constraint Unit develops conditions to prevent performance degradation. 

4. The Hyperparameter Tuner computes the optimal minibatch size to meet efficiency 

constraints. 

Their experimental results showed that the proposed architecture reduced the memory 

requirements for training ResNet-152 from 24 GB to 8 GB. 

The authors in [12] proposed the DeepSpotCloud architecture to execute deep learning 

tasks with cost efficiency and fault tolerance. Figure 1 illustrates the system architecture of 

DeepSpotCloud, which includes several important modules: 

1. The Spot Instance Orchestrator executes tasks for spot price monitoring, 

recommendation, and arbitration. 

2. The Spot Price Monitor accesses the current GPU spot price. 

3. The Instance Arbitrator monitors running instances to identify interrupted tasks. 
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Their experimental results demonstrated significant cost savings with a marginal increase 

in task running time. 

 

The authors in [13] proposed a scalable architecture for large-scale DNN training in a 

distributed environment. The framework comprises a four-tier technology stack: 

1. Hardware Infrastructure: Nvidia CUDA GPU cluster and nodes 

2. Nvidia CUDA Drivers 
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3.  Middleware: HDFS storage and cluster resource management using Apache Flink 

4. Application Framework: Enables the management of large data storage (GB scale) 

 

The framework also includes a learning pipeline for scaling across distributed 

environments, a neural network package, a deep architecture builder, a GPU executor, a linear 

algebra library, and data format parsers. 

A significant challenge in training DNNs, such as CNNs, is the high demand for 

computational resources and memory bandwidth. Accurate modeling of GPU performance 

relative to available computational and memory resources is crucial for design optimization. 

The authors in [14] proposed DeLTA, an analytical GPU model for CNNs that considers 

various parameters (arithmetic performance, memory hierarchy traffic, data reuse) to optimize 

computation throughput and memory bandwidth. Their work utilized two NVIDIA Pascal 

GPUs (P100 and TITAN Xp) and a Volta GPU (V100) and was validated on four CNN 

architectures (AlexNet, VGG, GoogLeNet, ResNet). Their experimental results demonstrated 

that the DeLTA architecture could be used for resource space exploration and identifying trade-

offs using various scaling parameters to meet different design requirements. 

The authors in [15] proposed GRAMARCH, a heterogeneous 3D Network-on-Chip (NoC)-

enabled GPU and ReRAM (Resistive Random-Access Memory) architecture that leverages the 

advantages of ReRAM and GPUs for 3D NoC. Figure 2 illustrates the GRAMARCH 

architecture, which consists of two layers: 

1. Bottom Layer: Contains the GPU and Last Level Cache (LLC) tiles 

2. Top Layer: Contains the ReRAM for storage and computation, including eDRAM 

buffers, in-situ multiple-accumulate units (IMA), output registers, shift-and-add, sigmoid, and 

max-pool units 

Their experimental results showed a performance improvement of up to 53 times compared 

to conventional GPUs for image segmentation. Furthermore, the authors in [16] proposed 

AccuReD, an M3D-enabled architecture combining ReRAM arrays with GPU cores for 

training CNNs with high performance and accuracy. Their experimental results indicated that 

the proposed architecture could accelerate CNN training processes by up to twelve times 

compared to conventional GPU platforms. 

Machine Learning in GPU Architecture 

Machine learning (ML) algorithms have seen widespread adoption across various 

domains and hardware platforms in recent years. This section describes different types of 

machine learning techniques for embedded intelligence on GPUs. 

Architecture/Platform/Framework and Strategy 

The authors in [56] proposed a parallel approach called the H-ELM (hierarchical 

extreme learning machine) algorithm, which is based on GPU and Flink, an in-memory 

cluster computing platform. Figure 7 illustrates the architecture and workflow of H-ELM. 

Flink uses Java interfaces to communicate with the GPU. The GFlink architecture is 

depicted in Figure 8. 
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The authors in [57] introduced a GPU architecture integrated with the Spark Big Data 

framework. HeteroSpark clusters can be conceptualized as Spark clusters with GPUs 

connected to Spark worker nodes. The HeteroSpark architecture integrated GPU 

accelerators into the Spark framework to enhance data parallelism and algorithm 

acceleration. Experimental validation of the HeteroSpark architecture using popular 

machine learning applications demonstrated an 18-fold performance improvement. 

In [58], the authors proposed an efficient GPU-based MapReduce framework to 

accelerate Support Vector Machine (SVM) learning. GPUs were utilized for parallel 

numerical calculations, while MapReduce facilitated parallel task scheduling and 

processing. Their approach employed the MapReduce computational model to parallelize 

SVM search tasks, resulting in significant performance enhancements for SVM learning. 
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[59] introduced fast and low-precision learning for a GPU-accelerated spiking neural 

network (SNN) simulator architecture called ParallelSpikeSim. This simulator employed 

unsupervised learning and stochasticity to achieve fast and accurate learning with low-

precision operations. Experimental results showcased a two to three times speedup in 

learning performance compared to deterministic SNN architectures across simple and 

complex datasets. 

In [60], the authors proposed an event-based and time-driven SNN simulator for a 

hybrid CPU-GPU platform. They conducted a comparative study of different simulation 

methods (event-driven and time-driven) across various computational platforms. Their 

experimental work implemented the event-driven neural simulator based on lookup tables 

(EDLUT) in CPU/GPU clusters, resulting in improved spike propagation and queue 

management times. 

[61] presented a neural accelerated architecture for GPUs termed NGPU, enabling 

scalable integration of neural accelerators for large numbers of GPU cores. NGPU featured 

improvements such as elimination of fetch/decode during neural execution, reduction of 

memory/register file accesses, and implementation of the sigmoid using a lookup table. 

Experimental results demonstrated an average 2.4 times performance improvement 

speedup and a 2.8 times average energy reduction across a diverse set of benchmarks. 

[62] proposed a novel machine learning approach to determine optimal GPU memory 

requirements for CUDA applications. Their workflow involved two phases: Offline 

learning and Online inference. The Offline learning phase utilized the NSight CUDA 

Profiler to collect profiling metrics. Their experimental results accurately predicted 

optimal memory requirements for discrete memory or unified memory space using various 

classifiers. 

Finally, in [63], the authors introduced a generic sparsity pattern termed Regularized 

Multi Block (RMB) sparsity pattern, along with an efficient storage format (CRMB) and 

a fast GPU algorithm for processing the RMB Matrix Multiplication (MM). Their work 

demonstrated that the RMB sparsity pattern enabled efficient implementations for parallel 

algorithms and reduced storage for sparse matrices. 

Applications 

The authors in [66] introduced an approach to optimize GPU energy consumption 

using dynamic voltage and frequency scaling (DVFS). Their method implemented the 

DVFS energy management model within a GPU. Experimental results conducted on three 

GPU platforms (Tesla, Fermi, and Kepler) showcased improvements in both performance 



Bhuvi Chopra           28   
 

 
 

and power. Additionally, in [67], another approach called EDVFS utilized GPU and 

memory coordination to save energy. The EDVFS method adjusted voltage and frequency 

based on extracted runtime characteristics, achieving maximum energy savings of 10.63% 

and average energy savings of 2.68% compared to traditional DVFS. 

In [68], a GPU-based approach for PLV (phase locking value) biomarkers was 

proposed, resulting in a 21.3 times improvement in search space efficiency and reduced 

complexity for on-device processing. Furthermore, [69] presented an efficient GPU-based 

implementation of multivariate empirical mode decomposition (MEMD) for neural data 

processing, achieving a performance boost of 6 to 16 times compared to traditional PC-

based implementations. 

[70] explored GPU usage for simulating large-scale neuronal networks based on the 

AdEx neuron-model, achieving a fifty-fold performance improvement compared to 

reference multicore implementations. Similarly, [71] introduced a GPU Simulator of 

MLMVN, demonstrating a thirty-fold performance enhancement for the MLMVN 

learning process. 

In [72], a novel approach for ECG recognition over GPU platforms using the 

probabilistic neural network (PNN) was proposed. Experimental results showed improved 

computational time and algorithm performance compared to other learning models such 

as SVM and ELM.  

[73] proposed a fast soma cell detection approach in knife-edge scanning microscopy 

(KESM) for high-throughput imagery using GPU-accelerated machine learning, achieving 

real-time cell detection exceeding traditional KESM data rates. Meanwhile, [74] presented 

a parallel implementation of chaos neural networks for an embedded GPU using OpenCL, 

resulting in a pseudo-random number generator that was 49% faster than AES in counter 

mode. 

[75] proposed an approach for anomaly-based intrusion detection system (IDS) using 

GPU-accelerated neural architecture, showcasing a thirty-fold performance improvement 

compared to CPU implementations. Additionally, [76] introduced an approach for robot 

trajectory generation and collision-free trajectory computation for robot swarms using 

GPU, achieving feasible and collision-free trajectories within seconds. Lastly, [77] 

proposed the GPU WiSARD Vessel Tracker GWVT, which utilized the WiSARD 

weightless neural network implemented on a GPU for maritime vessel tracking. 

Experimental results indicated improved performance compared to CPU trackers. 
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Conclusions 

This paper has provided an extensive survey of the research domain concerning 

embedded intelligence (EI) within GPU-based architectures and hardware 

implementations. The review encompassed both contemporary deep learning 

methodologies and traditional machine learning approaches. Additionally, the discussion 

extended to GPU memory scheduling and communication, underscoring their significance 

in advancing EI technologies. 

The exploration of GPU-based EI applications spanned various domains, including 

image processing, computer vision, medical applications, modeling or prediction, 

convolution, performance analysis, and VLSI placement. These discussions aimed to 

underscore the broad potential of EI technologies for real-world deployments. 

By offering insights into this burgeoning field, this paper endeavors to serve as a 

valuable resource, inspiring researchers to delve deeper into this pivotal and evolving 

technological domain. 
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