
 

1. Introduction: 

Skin cancer is a global health concern, and its incidence rate has risen steadily in recent 

years. In the United States, skin cancer is the most common form of cancer. Melanoma, 

although it accounts for only approximately 1% of skin cancers, is responsible for a majority 

of skin cancer deaths. According to the American Cancer Society estimates for 2024, 

approximately 100,640 new melanomas will be diagnosed, and approximately 8,290 deaths 

due to melanoma will occur. Additionally, melanoma survival rates can be very high when the 

cancer is detected early[1]. It is the most common type of cancer worldwide, affecting millions 

of individuals and posing a significant burden on healthcare systems. Timely detection and 

accurate diagnosis of skin cancer are crucial for effective treatment and improved patient 

 

ISSN: 2959-6386 (Online), Volume 3, Issue 2, June 2024  

Journal of Knowledge Learning and Science Technology  

Journal homepage: https://jklst.org/index.php/home   

 

Skin Cancer Detection Based on Machine Learning 

 

Yuanzhou Wei (1),  Dan Zhang (2),  Meiyan Gao (3), Aliya Mulati (4), 

Changyang Zheng (5),  and Bolin Huang (6) 

1 College of Engineering and Computing, Florida International University, Florida, USA 
2 School of Information Science and Engineering, Shandong University, Shandong, China 
  3 College of Engineering and Computing, Florida International University, Florida, USA 

4 Biological Science, Florida International University, Florida, USA 
5 School of Engineering, Brown University, Rhode Island, USA 

6 Viterbi School of Engineering, University of Southern California, California, USA 

  Abstract 
Skin cancer, particularly melanoma, poses a significant health risk, accounting for the majority of skin 

cancer-related fatalities in the United States. Despite representing a small fraction of skin cancer cases, 

melanoma has one of the highest death rates, stressing the critical need for early detection. The American 

Cancer Society projects approximately 100,640 new melanoma cases and approximately 8,290 related deaths 

for 2024, yet also notes high survival rates when caught early. In this context, our study employs machine 

learning to enhance early detection, analyzing a large dataset from The International Skin Imaging 

Collaboration (ISIC) featuring over 53,000 images across various skin conditions. We assess Support Vector 

Machine (SVM), K-Nearest Neighbors (K-NN), and Decision Tree classifiers through both binary and 

multiclass frameworks, with Principal Component Analysis (PCA) aiding in data dimensionality reduction 

and visualization. Our findings reveal SVM and K-NN as effective for binary classification, with K-NN 

excelling in multiclass scenarios. These results underscore the promise of machine learning in clinical 

settings, offering a path toward improved skin cancer diagnostic tools and underlining the importance of 

algorithm refinement and sophisticated data analysis techniques. 
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outcomes. Traditional methods of skin cancer diagnosis rely heavily on visual inspection by 

dermatologists, which can be subjective and dependent on the expertise of the clinician. 

Therefore, there is a growing need for automated and objective methods for skin cancer 

detection. [2] 

 

1.1 Research Objectives 

The primary objective of this research was to explore the application of machine learning 

techniques for skin cancer detection. By leveraging a comprehensive dataset obtained from 

The International Skin Imaging Collaboration (ISIC), we aimed to develop an automated 

system capable of accurately identifying various types of skin cancer lesions. [3][4] This 

research aims to address the limitations of traditional diagnostic methods and provide a 

reliable, efficient, and accessible tool for early skin cancer detection. The specific research 

objectives include the following: 

• Different machine learning algorithms, such as support vector machines (SVMs), K-

nearest neighbors (K-NNs), and decision trees, have been investigated for skin cancer 

classification. 

• The performance of these algorithms in binary classification tasks for distinguishing 

between cancerous and noncancerous lesions was assessed. 

• The classification task was extended to multiclass scenarios to identify specific types 

of skin cancer. 

• Dimensionality reduction techniques, such as principal component analysis (PCA), can 

be applied to enhance the efficiency and interpretability of classification models. 

• The performances of the different algorithms are evaluated and compared using 

appropriate evaluation metrics. 

• This study provides insights into the strengths and limitations of each algorithm and 

identifies the most effective approach for skin cancer detection in the given dataset. 

Related Works 

Significant strides have been made in skin cancer detection leveraging machine learning 

techniques. Brinker’s Research has extensively utilized various algorithms, including deep 

learning architectures, to accurately classify skin lesions. Convolutional neural networks 

(CNNs), for instance, have been effective at extracting features from medical images and have 

shown promising results in identifying skin cancer. To further enhance the efficiency and 

interpretability of classification models, dimensionality reduction techniques such as PCA have 

also been applied [5]. 

The exploration of scalable multiagent systems in classification processes represents a 

significant advancement, potentially revolutionizing diagnostic models in medical imaging. 

The pioneering work by Chen et al. in utilizing Kronecker graphs for scalable multiagent 

covering option discovery offers considerable promise for addressing complex classification 

tasks, including those related to skin cancer detection. Their subsequent research, employing 

the Kronecker product of factor graphs, introduced a structured graphical model approach 

aimed at improving algorithmic efficiency and accuracy [6][7][8][9]. 

Moreover, the development of automated systems for skin cancer detection has been a 

focus, utilizing diverse datasets from public databases and collaborations with dermatology 
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clinics. Common evaluation metrics such as accuracy, sensitivity, specificity, and the area 

under the ROC curve have been instrumental in assessing algorithm performance. The studies 

from Gupta P, Huang, and D. Zhang built upon existing research by utilizing a unique dataset 

from ISIC and evaluating various classification algorithms, including SVM, K-NN, and 

decision tree, aiming for a comprehensive analysis in both binary and multiclass classification 

scenarios to advance the capabilities of automated skin cancer detection [10]-[16]. 

Further enriching this domain, advancements from different fields have shed light on 

promising techniques for skin cancer detection. Research in malware detection and vascular 

imaging and panoramic image creation, as well as innovative methods in medical image 

segmentation and MRI contrast enhancement [17]-[25], has demonstrated the cross-

disciplinary potential for enhancing pattern recognition, image processing, and analysis, which 

is directly applicable to improving skin cancer diagnostics. 

2 Dataset and Preprocessing 

2.1 Dataset Description: 

The dataset used in this research is sourced from The International Skin Imaging 

Collaboration (ISIC). It comprises a collection of 53,177 images representing 103 different 

classes. These images were initially categorized based on ISIC classifications, which include 

various skin diseases such as actinic keratosis, basal cell carcinoma, dermatofibroma, 

melanoma, nevus, pigmented benign keratosis, seborrheic keratosis, squamous cell carcinoma, 

and vascular lesions. 

The dataset is diverse and comprehensive, covering a wide range of skin cancer types and 

conditions. However, it is important to note that the distribution of images across the classes 

may not be evenly balanced. Specifically, melanomas and moles may have a slightly greater 

representation than other classes. This imbalance requires close attention throughout the entire 

data analysis and classification stages to ensure that the results are accurate and fair. 

 

 
Figure 1 Data sample 
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2.2 Data Preprocessing 

2.2.1 Image Conversion and Augmentation 

To standardize the images and facilitate consistent processing, all images in the dataset are 

resized to a uniform resolution. This resizing step ensures that the images have the same 

dimensions, enabling compatibility with the algorithms and avoiding discrepancies in feature 

extraction. Each image is converted to a 150x150 NumPy array for each RGB dimension (x3). 

Then, the data were flattened into a single vector (i.e., image features vector) and scaled by 

subtracting the mean of the dataset to perform classification algorithms. To enhance the 

dataset's variability and improve the generalizability of the models, data augmentation 

techniques can be employed. These techniques involve applying transformations such as 

rotation, flipping, zooming, and shifting to the images. By generating additional augmented 

images, the dataset size can be increased, leading to better model performance and robustness. 

2.2.2 Feature Extraction and Data Splitting 

To glean meaningful insights from the images, we employ feature extraction techniques. 

These methods transform raw image data into a succinct representation, emphasizing the most 

pertinent characteristics of skin lesions. Among the prominent extraction methodologies are 

the histogram of oriented gradients (HOG), local binary patterns (LBP), and deep learning-

driven feature extraction via pretrained convolutional neural networks (CNNs). We partition 

the dataset into training, validation, and testing subsets. While training the models, the 

validation subset aids in hyperparameter optimization and model selection. By performing 

these preprocessing steps, the dataset is prepared for training and evaluation using machine 

learning algorithms. These steps ensure data consistency, increase dataset variability, and 

enable effective feature extraction, leading to improved model performance and accurate skin 

cancer classification. 

Table 1 Data split distribution 

Type Train Image Num Test Image Num 

BCC 2825 498 

AK 748 119 

 

3 Methods 

3.1 Principal component analysis 

Principal component analysis (PCA) streamlines data by transforming features into 

principal components—new variables that capture essential information while discarding 

redundancies. [26] In our study, PCA distills critical features from skin cancer images, 

simplifying the data into a more manageable form without sacrificing vital information. By 

prioritizing principal components based on their eigenvalues, which indicate their variance, we 

select those that best encapsulate the data's underlying structure. This allows us to focus on the 

most influential factors in skin cancer image analysis. 

The sample covariance matrix technique involves standardizing the data by subtracting the 

mean of the full dataset from each sample and dividing it by the variance to achieve a unitary 

variance for each instance. This final step is beneficial for reducing the CPU workload. 

𝑍=𝑋−𝜇𝜎2 
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To compute the covariance matrix for the given data {𝑥1, 𝑥2..., 𝑥𝑛} with an 𝑛 number of 

samples, the covariance matrix is obtained by: 

Σ=1𝑛∑𝑖=1𝑛(𝑥𝑖−𝑥¯) (𝑥−𝑥¯) 𝑇 

where 

𝑥¯=1𝑛∑𝑖=𝑖𝑛𝑥𝑖 

 

The covariance matrix can also be obtained simply by multiplying the standardized matrix 

Z by its transpose, where Z is the matrix containing the standardized data samples {𝑥1, 𝑥2..., 

𝑥𝑛}. This method efficiently calculates the covariance matrix without explicitly computing the 

individual covariances between all pairs of variables: 

𝐶𝑂𝑉(𝑋)=𝑍𝑍𝑇 

3.2 K-FOLD cross-validation 

In model evaluation, datasets are typically partitioned into a training set and a test set, often 

with a 75% to 25% ratio favoring training. This method trains the model exclusively on the 

training set before assessing its accuracy using the test set. However, this standard approach 

may not always be ideal due to potential variability and bias between the training and test sets, 

which could affect the model's ability to generalize well across different data samples. 

To overcome these challenges, cross-validation, a statistical method that divides a dataset 

into multiple subsets for comprehensive evaluation, is utilized. This technique involves training 

the model on one subset and validating it on another, conducting several rounds of this process 

with various data subsets to minimize variability and enhance the reliability of the performance 

assessment. 

K-fold cross-validation, a specific form of this technique, equally segments the dataset into 

k folds. It reserves one fold for testing and uses the remaining for training, cycling through all 

folds to ensure that each one is used for validation exactly once [27]. This method not only 

allows for a thorough evaluation across different data subsets but also addresses potential 

overfitting and bias, providing a more nuanced and accurate estimate of model performance. 

K-fold cross-validation was used in our study to evaluate the skin cancer detection models. 

By iteratively training and testing across k folds, we achieve a robust measure of accuracy and 

generalizability for the models under consideration. This strategy effectively mitigates 

common issues such as overfitting and sample bias, thereby bolstering the credibility of our 

results. In essence, K-fold cross-validation enhances the assessment process for machine 

learning models, particularly in applications such as skin cancer detection, by ensuring a more 

reliable and accurate performance metric. 

3.3 Classification algorithms 

To classify skin cancer lesions, three classification algorithms were applied in this study: 

support vector machine (SVM), K-nearest neighbors (K-NN), and decision tree. These 

algorithms have demonstrated effectiveness in various classification tasks and are well suited 

for skin cancer detection. 

3.3.1 Support Vector Machine (SVM) LINEAR SVM 

SVM is a powerful supervised learning algorithm widely used for binary and multiclass 

classification. It aims to find an optimal hyperplane that maximally separates the different 
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classes in the feature space. [28] SVM achieves this by transforming the input data into a 

higher-dimensional feature space and finding the hyperplane with the maximum margin 

between classes. With appropriate kernel functions, SVMs can effectively handle nonlinear 

classification problems. In this research, SVM is utilized for both binary and multiclass 

classification tasks. The accuracy of SVM was 74.67%, and the accuracy of SVM and K-FOLD 

cross-validation was 0.73 (+/- 0.06). 

 

Figure 2 SVM normalized confusion matrix 

3.2.2 K-nearest neighbors (K-NN) 

K-NN is a simple effective nonparametric algorithm used for classification. It classifies 

samples based on their proximity to other samples in the feature space. Given a new input, K-

NN identifies the K nearest neighbors and assigns a class label based on the majority vote 

among its neighbors. K-NN is a versatile algorithm that does not assume any underlying data 

distribution and can handle multiclass classification tasks. [29] In this study, K-NNs were 

employed to classify skin cancer lesions based on their feature representations. The steps 

involved in this method are straightforward: 

• Unclassified data points were retrieved. 

• The distance between the new data point and all other classified data points is 

measured using the selected distance metric. 

• Retrieve the K smallest distances. 

• The list of classes associated with the shortest distances and the occurrence of each 

class were examined. 

• The correct class is determined by selecting the class that appears most frequently. 

• The new data points are classified by assigning them to the class identified in the 

previous step. 
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The accuracy of the K-NN was 74.93%, and the accuracy of the K-NN and K-FOLD cross-

validation methods was 0.74 (+/- 0.03). 

 

Figure 3 K-NN normalized confusion matrix 

 

Figure 4 Accuracy with different K values 

3.2.3 Decision Tree 

A decision tree is a popular supervised learning algorithm that partitions the feature space 

based on a series of if-else conditions. It creates a tree-like model where each internal node 

represents a feature and each leaf node represents a class label. Decision tree algorithms can 

handle both binary and multiclass classification problems and offer interpretability by 
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providing transparent decision rules. [30] In this research, a decision tree was utilized as 

another classification approach for skin cancer detection. By employing these classification 

algorithms, this study aimed to compare their performance in skin cancer classification tasks 

and determine the most effective approach for the given dataset. The algorithms will be trained 

and evaluated using appropriate performance metrics to assess their accuracy, precision, recall, 

and F1-score, among others. Starting from an empty tree, we need to iteratively find the best 

attribute on which to split the data locally at each step. If a subset contains records that belong 

to the same class, then the leaf containing such a class label is created; otherwise, if a subset is 

empty, it is assigned to the mayor class by default. The critical points of decision trees are the 

test condition, the selection of the best attribute and the splitting condition. For the selection of 

the best attribute, the attribute that generates homogeneous nodes is generally chosen. There 

are different metrics for finding the best splitting homogeneity: 

• GINI impurity index: Given 𝑛 classes and 𝑝𝑖 the fraction of items of class 𝑖 in 

subset p, for 𝑖∈ {1, 2..., n}. Then, the GINI is defined as: 

𝐺𝐼𝑁𝐼=1−∑𝑖=1𝑛𝑝2𝑖 

• Information Gain Ratio: The information gain is based on the decrease in entropy 

after a dataset is split into attributes. Constructing a decision tree involves finding 

the attribute that returns the highest information gain (i.e., the most homogeneous 

branches). 

Entropy is defined as follows: 

𝐻(𝑖)=−∑𝑛𝑖=1𝑝𝑖log2𝑝𝑖 

Then, the information gain is defined as: 

𝐼𝐺=𝐻(𝑝)−𝐻 (𝑝, 𝑖) =𝐻(𝑝)−∑𝑖=1𝑛𝑛𝑖𝑛𝐻(𝑖)  

where p is the parent node. The advantages of decision trees include their velocity, ease of 

interpretation and good accuracy, but they could be affected by missing values. The accuracy 

of the decision tree was 67.33%. The accuracy of the decision tree and K-FOLD cross-

validation methods was 0.72 (+/- 0.04). As shown in Figure 6, the accuracy in the training 

phase increases, while the accuracy in the test phase decreases, which means that the 

model overfits increasing the maximum depth of the tree [31]. 
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Figure 5 Design tree normalized confusion matrix 

 

Figure 6 Design tree accuracy with different max_depths 

 

4. Experimental Results 

To determine the best algorithm for skin cancer detection in this dataset, we applied the 

following key evaluation metrics: accuracy, confusion matrix, and the area under the ROC 

curve (AUC) 
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Accuracy is defined as the ratio of correct predictions to the total number of cases. A high 

accuracy rate indicates a model's effectiveness in accurately predicting class labels. 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

The confusion matrix provides a visual breakdown of the algorithm's performance by 

quantifying true positives (TPs), false positives (FPs), true negatives (TNs), and false negatives 

(FNs). 

The ROC curve plots the true positive rate (TPR), also known as recall, against the false 

positive rate (FPR). TPR is calculated as: 

TPR = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

The AUC of the ROC curve measures the model’s ability to differentiate between classes, 

with higher AUC values indicating greater discriminative power. 

The FPR is the ratio of incorrectly identified negatives to the total number of actual 

negatives: 

FPR = 
𝐹𝑃

𝑇𝑁+𝐹𝑃
  

Collectively, these metrics provide a comprehensive evaluation, blending overall 

performance with a nuanced look at the model's ability to distinguish and accurately classify 

different classes. 

4.1 Performance Comparison: 

Model training and hyperparameter fine-tuning transpired using the designated training and 

validation datasets, while the performance assessment was anchored on the testing set. 

Preliminary analyses of the outcomes revealed disparate performance levels among the 

algorithms. Key metrics, including accuracy, precision, recall, and the F1-score, were 

systematically deduced for each algorithm. Additionally, the confusion matrices provided 

granular insights, revealing each algorithm's advantages and potential pitfalls in discerning 

various skin cancer lesion types. Notably, both SVM and K-NN exhibited superior 

classification capabilities, as reflected by an AUC of 0.676. Conversely, the decision tree 

algorithm lagged, registering a less favorable AUC of 0.537. 
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Figure 7 ROC curves for different algorithms 

We focused on the application of three key machine learning algorithms—support vector 

machine (SVM), K-nearest neighbors (K-NN), and decision tree—for multiclass classification 

of 7 types of skin cancer. 

 

Table 2 Accuracy of Different Models in Multiclass Classification 

 

Abbreviation Types of Skin Cancer 

nv Melanocytic nevi 

ak Actinic keratoses 

bcc Basal cell carcinoma 

df Dermatofibroma 

mel Melanoma 

bkl Benign keratosis-like lesions 

vasc Vascular lesions 

 

In our study, we utilized the Scikit-learn library to import critical metrics for evaluating the 

effectiveness of our multiclass classification model. We selected support vector machine 

(SVM), K-nearest neighbors (K-NN), and decision tree classifiers, each configured with 

specific parameters tailored to our analysis. Initially, we trained the SVM classifier using our 

designated training dataset and subsequently evaluated its predictive accuracy against the test 

dataset. The performance metrics, including the accuracy of the SVM model, are detailed in 
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Table 3. Upon analysis, it became evident that the K-NN model exhibits superior performance 

in the context of multiclass classification, underscoring its effectiveness in handling the 

complexities associated with categorizing multiple skin cancer types. 

 

Table 3 Accuracy of Different Models in Multiclass Classification 

 

Algorism Model AUC Accuracy Accuracy with K-fold 

SVM 0.676 74.67% 73.15% 

K-NN 0.609 74.93% 74.03% 

Decision Tree 0.537 45.14% 72.33% 

 

4.3 Discussion 

Our comprehensive analysis and comparison of the experimental outcomes clearly indicate 

that both the support vector machine (SVM) and K-nearest neighbors (K-NN) algorithms 

significantly outperform the decision tree algorithm in terms of accuracy, precision, recall, and 

F1-score. Specifically: 

Support Vector Machine (SVM): SVM demonstrated exceptional skill in both binary and 

multiclass classification tasks, highlighting its ability to effectively identify and categorize 

various types of skin cancer with notable precision. 

K-Nearest Neighbors (K-NN): The efficacy of K-NN, which leverages its proximity-based 

classification method, was similarly impressive and slightly better than that of SVM in 

accurately identifying skin cancer lesions. 

In contrast, the decision tree, though effective in numerous settings, fell short in this 

particular application. This reveals potential challenges it may encounter in capturing the 

complex patterns present in the dataset. These insights emphasize the crucial importance of 

careful algorithm selection in the context of skin cancer detection projects. Furthermore, the 

performance of SVM and K-NN underscores the vast potential of machine learning in 

enhancing the automation of skin cancer diagnosis. As we move forward, it becomes essential 

to explore these models' adaptability further, particularly their performance on external, varied 

datasets, to understand their robustness and applicability in broader diagnostic scenarios. 

 

5. Conclusion 

This study has significantly advanced the development of an advanced automated skin 

cancer detection system based on machine learning techniques. Using a comprehensive 

collection of skin cancer images from The International Skin Imaging Collaboration (ISIC), 

this research successfully identified different types of skin cancer lesions. A detailed evaluation 

of three key classifiers—support vector machine (SVM), K-nearest neighbors (K-NN), and 

decision tree—was conducted, employing principal component analysis (PCA) for 

dimensionality reduction. The results underscore the superior performance of SVM and K-NN 

in accurately classifying lesions, while the decision tree method has several limitations. 

The importance of this work lies in its pioneering contribution to the field of skin cancer 

diagnosis. By integrating machine learning approaches, a refined system designed for the quick 



Yuanzhou Wei,  Dan Zhang,  Meiyan Gao, Aliya Mulati, Changyang Zheng,  and Bolin Huang 
  

          84   
 

 
 

and accurate identification of skin cancer was introduced. This systematic approach to lesion 

categorization serves as a valuable tool for medical professionals, enabling more informed and 

timely decisions that can improve patient outcomes. 

Although this study represents a significant step forward, it also highlights areas ripe for 

future exploration. Investigating alternative dimensionality reduction techniques such as t-SNE 

or MDS could provide deeper insights into the dataset's complex structure. The incorporation 

of real-time lesion tracking technologies and edge detection could improve the ability of the 

system to identify lesions accurately, enhancing diagnostic precision. Moreover, the 

exploration of ensemble algorithms such as random forest or gradient boosting is warranted, 

considering their proven effectiveness in increasing accuracy in various applications. 
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