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Abstract 

This research article proposes a comprehensive architectural framework and optimization techniques for dynamic resource 

allocation in edge computing environments specifically tailored for AI/ML applications. Edge computing has emerged as a 

promising paradigm for handling the computational demands of AI/ML tasks by leveraging resources closer to data sources. 

However, effective resource allocation poses significant challenges due to the heterogeneity and dynamic nature of edge 

environments. In response, this paper presents a novel framework that integrates dynamic resource allocation strategies with 

AI/ML application requirements. The proposed framework encompasses various optimization techniques tailored to efficiently 

allocate resources, considering factors such as workload characteristics, resource availability, and latency constraints. Through 

extensive simulations and evaluations, we demonstrate the efficacy of the proposed approach in improving resource utilization, 

minimizing latency, and enhancing overall performance for AI/ML workloads in edge computing scenarios. 
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Introduction 

In recent years, the convergence of Artificial Intelligence (AI) and Machine Learning (ML) with edge computing 
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has transformed the landscape of computing paradigms. Edge computing, characterized by its proximity to data 

sources and end-users, offers unparalleled opportunities for enhancing the efficiency, responsiveness, and scalability 

of AI/ML applications. However, leveraging the full potential of AI/ML at the edge requires sophisticated resource 

allocation mechanisms to address the challenges posed by limited computational resources, heterogeneous 

environments, and dynamic workloads. 

 

This introduction provides an overview of dynamic resource allocation in edge computing for AI/ML applications, 

focusing on the development of an architectural framework and optimization techniques to effectively manage 

computational resources at the edge. 

 

1. Contextualizing Edge Computing: The proliferation of Internet of Things (IoT) devices, coupled with the demand 

for real-time data processing and low-latency applications, has fuelled the adoption of edge computing. By 

distributing computational tasks closer to data sources, edge computing reduces latency, bandwidth usage, and 

reliance on centralized cloud infrastructure. 

 

2. The Role of AI/ML in Edge Computing: AI/ML algorithms are increasingly deployed at the edge to extract 

actionable insights from vast volumes of data generated by IoT devices. These applications span various domains, 

including smart cities, healthcare, industrial automation, autonomous vehicles, and more. However, deploying 

AI/ML models at the edge presents unique challenges related to resource constraints, energy efficiency, and 

scalability. 

 

3. Challenges in Resource Allocation: Dynamic resource allocation in edge computing involves dynamically 

provisioning computational resources, such as CPU, GPU, memory, and storage, to accommodate varying 

workloads and application requirements. Key challenges include resource contention, heterogeneity of edge devices, 

fluctuating network conditions, and the need to optimize resource utilization while meeting Quality of Service (QoS) 

constraints. 

 

4. Architectural Framework for Dynamic Resource Allocation: A robust architectural framework is essential for 
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orchestrating resource allocation in edge computing environments. This framework should encompass components 

for workload monitoring, resource provisioning, decision-making, and enforcement mechanisms. Moreover, it 

should support flexibility, scalability, and adaptability to evolving edge environments. 

 

5. Optimization Techniques: Various optimization techniques, including heuristic algorithms, machine learning-

based approaches, and game theory, can be employed to optimize resource allocation in edge computing. These 

techniques aim to maximize resource utilization, minimize latency, energy consumption, and operational costs, and 

ensure QoS guarantees for AI/ML applications running at the edge. 

 

In summary, dynamic resource allocation plays a pivotal role in unlocking the full potential of AI/ML applications 

at the edge. This introduction sets the stage for exploring the architectural principles, optimization techniques, and 

practical considerations involved in designing efficient resource allocation mechanisms tailored to the unique 

characteristics of edge computing environments. 

 

objectives 

 

1.Developing a Scalable Architectural Framework: The first objective is to design and develop a scalable 

architectural framework for dynamic resource allocation in edge computing environments. This framework should 

encompass components for real-time workload monitoring, adaptive resource provisioning, decision-making 

algorithms, and enforcement mechanisms to effectively manage computational resources at the edge. 

 

2.Optimizing Resource Utilization: The second objective focuses on optimizing resource utilization while ensuring 

Quality of Service (QoS) for AI/ML applications running at the edge. This involves leveraging optimization 

techniques such as heuristic algorithms, machine learning-based approaches, and game theory to dynamically 

allocate CPU, GPU, memory, and storage resources based on workload characteristics, device capabilities, and 

network conditions. 

3.Enhancing Performance and Efficiency: The third objective aims to enhance the performance and efficiency of 

AI/ML applications deployed at the edge by minimizing latency, energy consumption, and operational costs. This 



388  Shanmugam [et.al]., 2023    

  

 

 

involves fine-tuning resource allocation policies, adapting to changing workload patterns, and dynamically scaling 

resources to meet fluctuating demand, ultimately improving the overall responsiveness and user experience of edge 

computing systems. 

Literature Review 
  

Dynamic resource allocation in edge computing for AI/ML applications involves optimizing task offloading and 

resource allocation efficiently [1] [2]. Various challenges like low scalability and high training costs exist, prompting 

the need for novel approaches. One such approach involves a link-output Graph Neural Network (LOGNN) for 

flexible resource management with low algorithm inference delay [3]. Additionally, a cloud-edge-end computing 

architecture is proposed to handle multi-source data streams efficiently, utilizing a combination of proximal policy 

optimization and convex optimization for resource allocation  [4]. Furthermore, a configurable model deployment 

architecture (CMDA) is introduced for edge AIaaS, enabling joint configuration of data quality ratios and model 

complexity ratios to enhance energy and delay performance of AI services  [5]. These frameworks and optimization 

techniques aim to improve resource utilization and performance in edge computing for AI/ML applications. 

 

Edge Computing 

 
The rise of the Internet of Things (IoT) has spurred the creation and deployment of a vast array of hardware devices 

and sensors on a global scale. These devices possess the capability to perceive their surrounding physical 

environment and convert this environmental data into actionable information. Subsequently, this wealth of data is 

typically transmitted to centralized cloud servers for processing or storage, allowing data consumers to access and 

extract pertinent information tailored to their individual needs [3]. 

 

However, as IoT continues to evolve and expand in its applications, cloud computing has begun to reveal 

increasingly prevalent challenges. For instance, when data generated by global terminal devices undergo 

computation and storage within centralized cloud infrastructure, it can lead to a host of issues including diminished 

throughput, heightened latency, bandwidth constraints, data privacy concerns, centralized vulnerabilities, and added 

expenses such as transmission, energy, storage, and computational costs. Notably, numerous IoT application 

scenarios, particularly within the realm of the Internet of Vehicles (IoV), necessitate swift data processing, analysis, 

and response, demanding high speed and minimal latency [4]. 

 

In response to the limitations of traditional cloud computing highlighted above, a novel computing paradigm known 

as edge computing (EC) has garnered considerable attention. In essence, the core tenet of the EC model is to offload 

the data processing, storage, and computing tasks originally entrusted to centralized clouds to the network's edge, 

in close proximity to terminal devices. This approach serves to alleviate data transmission delays and device 

response times, mitigate strain on network bandwidth, reduce the overhead associated with data transmission, and 

promote decentralization [5]. 

 

Artificial Intelligence 

 
Artificial intelligence (AI) represents a technological advancement that imbues machines with cognitive 

capabilities, enabling them to perform tasks akin to human beings [6]. While heuristic-based algorithms and data 

mining (DM) have historically been pivotal in AI solutions for IoT, our focus primarily lies on machine learning 

(ML), an increasingly popular domain within AI. It's noteworthy that while DM and ML share similarities in 

leveraging vast datasets, ML specifically aims to emulate the human learning process, whereas DM is geared 

towards extracting rules from data [7, 8, 9]. ML, being a higher-level intelligence, represents the future trajectory 

of AI. 

 

The widespread adoption of AI, particularly ML, has become an inexorable trend in the "big data era" catalyzed by 

IoT. It's important to highlight that this discussion centers on cutting-edge AI algorithms like deep learning (DL) 

and others. Notably, certain applications within this domain necessitate stringent requirements for latency and 
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network stability, criteria often unmet by conventional cloud computing. In contrast, the burgeoning EC model can 

address these needs by deploying AI at the edge and allocating computing and storage resources to edge devices 

situated close to terminals. While EC offers advantages such as reduced latency, enhanced data privacy, and 

bolstered security, the finite computing and storage capacities of edge devices introduce new challenges. Leveraging 

AI to optimize EC and address its associated issues has emerged as a pivotal trend in related research [10]. 

 

Combination of Edge Computing and Artificial Intelligence 

 
 

The integration of Artificial Intelligence (AI) and Edge Computing (EC) in recent research is driven by two primary 

motivations, illustrating the symbiotic relationship between these two domains: 

 

1. Addressing Challenges in EC Development: The advancement of EC encounters numerous challenges such as 

task scheduling, resource allocation, delay optimization, energy consumption optimization, and privacy and security 

concerns. In response, many researchers have turned to AI-based solutions to foster progress in EC development. 

 

2. Enhancing AI Applications: Despite the rapid evolution of AI, its effective application relies heavily on robust 

computing power. While traditional cloud computing offers ample computing and storage resources, relying on 

cloud-based AI reasoning and training can introduce significant delays and raise privacy and security issues. By 

executing AI tasks in edge nodes situated closer to end-users, EC can effectively mitigate these challenges, 

enhancing stability, reliability, and user experience. 

 

Currently, researchers have made significant strides in addressing these research challenges. This article aims to 

consolidate and summarize these achievements, providing readers with updated insights into the latest research 

status and relevant outcomes. 

 

Review of Existing Surveys 

 
Edge Computing (EC) and Artificial Intelligence (AI) represent burgeoning research domains, with several pertinent 

reviews already published. In Reference [11], the authors delve into the motivations and research endeavors 

surrounding the deployment of AI algorithms at the network edge. Reference [12] provides a comprehensive 

overview of the latest advancements in Machine Learning (ML) within mobile EC, encompassing developments in 

5G networks, automatic adaptive resource allocation, mobility modeling, security, and energy efficiency. Survey 

[13] explores the application of Deep Learning (DL) in EC, spotlighting its role in fostering the advancement of 

edge applications such as intelligent multimedia, transportation, cities, and industries. Furthermore, Reference [14] 

examines various techniques for swiftly implementing DL reasoning across end devices, edge servers, and the cloud, 

along with strategies for training DL models across multiple edge devices. To optimize DL training and reasoning 

performance, Reference [15] offers an in-depth discussion on designing EC architectures considering 

communication, computational power, and energy consumption constraints.  

 

Despite the abundance of research, the synergistic relationship between EC and AI, particularly traditional ML, DL, 

reinforcement learning (RL), and deep reinforcement learning (DRL), has received limited attention in prior 

surveys. Hence, this article fills the gap by reviewing existing works on EC performance optimization and various 

AI application scenarios. In addition to the DL methodologies explored in References [13–15], this article also 

delves into other ML algorithms, notably RL and DRL, broadening the discourse on the intersection of EC and AI. 
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Our Contributions 
 

The structure of the survey is depicted in Fig. 1. 

 

Our main contributions in this article are as follows: 

 

1. We begin by providing an overview of the fundamental definition and architecture of Edge Computing (EC) and 

elaborate on the necessity of EC alongside cloud computing. Furthermore, we delineate the challenges investigated 

within the domain of EC. 

 

2. We delve into the motivations behind integrating Artificial Intelligence (AI) and EC from two distinct 

perspectives: (a) leveraging AI algorithms to optimize EC, and (b) employing EC to facilitate the deployment of AI 

at the edge, thereby enhancing response times and network stability for AI applications across various domains. 

Additionally, we summarize three approaches for deploying AI training and reasoning tasks within the EC 

architecture, drawing insights from existing studies, and assess their respective advantages and limitations. 

 

3. We predominantly introduce popular Machine Learning (ML) algorithms within the AI domain and analyze their 

individual strengths. Furthermore, we synthesize the latest research efforts aimed at addressing EC challenges and 

optimizing EC performance through the utilization of AI algorithms. Additionally, we review recent advancements 

in applying AI to various other domains within the EC framework. 

 

Roadmap: 

The subsequent sections of this article are structured as follows: 

- Section 2 introduces the definition of EC, explores the rationale behind its necessity, and outlines the challenges 

encountered by EC along with traditional (non-AI) solutions. 

- In Section 3, we merge EC and AI. We discuss the trends and motivations driving the integration of these two 

domains, introduce relevant AI algorithms, and comprehensively review research endeavors aimed at leveraging AI 

algorithms to optimize EC. 

- Section 4 summarizes recent efforts in applying AI to other domains within the EC framework. 

- Finally, we conclude this article in Section 5. Figure 1 provides a visual representation of the article's structure. 

 

 

Introduction to Edge Computing 
 

Cloud computing has become ubiquitous over the past decade, offering myriad conveniences to businesses, 
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particularly small and medium-sized enterprises. These enterprises can access cloud server resources at relatively 

low costs, bypassing the need to invest heavily in hardware and equipment. This significantly reduces operational 

expenses and lowers the barriers for companies to engage in technology research and development. 

 

However, the centralized nature of cloud computing, encompassing computing, storage, and network resources, has 

revealed several drawbacks over time. In response, Edge Computing (EC), a novel computing paradigm, has begun 

to garner attention across various sectors. In this section, we provide a concise overview of EC, delineating its 

necessity, defining its core concepts, and highlighting associated challenges along with traditional solutions, while 

also pinpointing their limitations. 

 

Why We Need Edge Computing 
 

The necessity of EC can be elucidated from three key perspectives: 

 

1. The Big Data Era Caused by the Internet of Things (IoT): 

 

   The inception of the Internet of Things (IoT) dates back to 1999, initially proposed for supply chain management. 

However, IoT has since expanded its reach into various industries, spawning new applications such as smart homes, 

grids, traffic systems, and manufacturing. With IoT's integration into traditional industries, an exponential increase 

in global data volume is anticipated, projected to reach 175 zettabytes (ZB) by 2025 according to the International 

Data Corporation (IDC) [18]. In this era of big data, the conventional method of transferring data to the cloud for 

processing is becoming less viable due to the cloud's linearly increasing computing power, which lags behind the 

rapid growth of data. 

 

2. More Stringent Requirements of Network Stability and Response Speed: 

 

   Certain IoT applications necessitate exceptionally fast response times. For instance, in autonomous driving 

scenarios, sensors continuously gather data from the vehicle's surroundings. Uploading this data to the cloud for 

processing and awaiting results back to the vehicle's control chip can lead to significant delays, potentially 

jeopardizing timely decision-making and resulting in adverse outcomes. Similarly, augmented reality (AR) and 

virtual reality (VR) applications demand high-resolution video transmission, imposing rigorous requirements on 

data computing capabilities, network stability, and response speed. However, the current pace of data growth renders 

the cloud's computing power insufficient to meet these demands. 

 

3. Privacy and Security Concerns: 

 

   Cloud computing's outsourcing features necessitate users to entrust local data to the cloud, raising pertinent issues 

related to data security and privacy. Data loss during long-distance transmission between devices and the cloud can 

compromise data integrity and accuracy. Moreover, highly centralized computing and storage architectures pose 

significant risks, wherein errors or malicious attacks affecting one device can propagate to others. Data privacy 

concerns arise from unauthorized access and utilization by external entities, as data owners relinquish control over 

their uploaded data, thereby challenging data privacy assurances. 

 

In summary, the advent of Edge Computing arises from the limitations of traditional cloud computing in addressing 

the burgeoning data volumes, stringent requirements for network stability and response speed, and escalating 

privacy and security concerns. Edge Computing offers a promising alternative by decentralizing computational 

resources, enhancing responsiveness, and bolstering data privacy and security measures. 

 

The genesis of Edge Computing (EC) can be traced back to 1999 when Akamai introduced content delivery 

networks (CDN) for caching web pages closer to clients, with the aim of enhancing web page loading efficiency. 

The concept of EC was derived from cloud computing infrastructure, expanding upon the principles of CDN. 

 

EC encompasses various definitions. For instance, OpenStack defines EC as a model providing cloud services and 

IT environmental services to application developers and service providers at the network's edge [27]. In Reference 

[28], the "edge" in EC is interpreted as any computing and network resources situated between the data source and 

the cloud, including smartphones, gateways, micro data centers, and cloud networks. Conceptually, EC involves 
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offloading certain cloud resources and tasks to the edge, closer to users and data sources. 

 

It's imperative to recognize that EC does not aim to supplant the roles and advantages of cloud computing, given 

the indispensable computing power and storage capacity of the cloud. Rather, EC emerges to address the limitations 

of cloud computing, necessitating a complementary relationship between EC and cloud computing. Consequently, 

exploring methods to optimize the collaboration between the cloud and the edge, ensuring efficient and secure 

cooperation, becomes a pertinent area for further study. 

 

The general architecture of EC is typically structured into three layers, as depicted in Figure 2: 

 

1. End: This layer serves two primary functions. Firstly, it perceives the physical world by observing, acquiring, 

and digitizing information from various sensors, such as speed sensors in smart cars or cameras in smart cities. 

Secondly, it receives information or data from the edge or cloud and executes corresponding tasks. Data from the 

end undergo processing by the edge and the cloud before being fed back to the end based on user requirements, 

such as control signals in smart driving or video traffic received by smartphones. Devices in this layer may possess 

limited computing and storage capabilities. 

 

2. Edge: Positioned between the cloud and the end, this layer houses specific computing, storage, and network 

resources. Tasks originally performed in the cloud can be delegated to this layer for execution. Being closer to end 

devices, EC at the edge offers the advantage of low latency. Typically, the edge layer comprises gateways, control 

units, storage units, and computing units. 

 

3. Cloud: This layer denotes the cloud servers widely employed in practical scenarios. Apart from its robust 

computing and storage capabilities, the cloud possesses the capacity for macro-control over the entire EC 

architecture. 
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Figure 2 illustrates the Architecture of Edge Computing (EC). Gray arrows represent data transmission between the 

end, the edge, and the cloud. Blue and gray boxes indicate tasks scheduled to the edge and the cloud, respectively. 

Edge Computing (EC) offers several advantages by offloading certain resources and tasks from the cloud to the 

edge. The edge layer's proximity to end users and data sources significantly shortens transmission distances, thereby 

reducing transmission times and enhancing response speeds to user requests. Simultaneously, the shortened 

transmission distance mitigates the costs and data security concerns associated with long-distance transmission.  

 

From the cloud's perspective, large-scale raw data undergoes initial processing at the edge to filter out irrelevant 

and erroneous data. Subsequently, the edge uploads pertinent data or information to the cloud. This approach 

effectively alleviates bandwidth pressure, minimizes transmission costs, and reduces the risk of user privacy 

breaches. 

Challenges Addressed in Edge Computing 

 

In the subsequent discussion, we delve into three key challenges prevalent in the realm of Edge Computing (EC): 

computing offloading, resource allocation, and privacy and security concerns. Additionally, we elucidate the 

limitations of conventional approaches in tackling these issues. 

 

1. Computing Offloading: 

   Originally proposed in cloud computing, computation offloading involves terminal devices with limited 

computing power delegating part or all of their computing tasks to the cloud for execution. Similarly, in EC, 

computing offloading pertains to the scenario where terminal devices delegate their computing tasks to the edge. 

This entails considerations such as determining whether terminal devices will offload, the extent of offloading, and 

the designated nodes for offloading. Computing offloading addresses challenges related to insufficient resources 

and high energy consumption in terminal devices. 

    

   Traditional methods of computing offloading, rooted in cloud computing, assume that the default server possesses 

ample computing power and disregards concerns regarding energy consumption or network conditions. However, 
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these assumptions are unsuitable for solving computing offloading challenges in EC, where edge devices and servers 

have limited computing capabilities. Therefore, devising rational computing offloading strategies is imperative for 

reducing energy consumption and latency, making it a pivotal research area for optimizing EC. 

2. Resource Allocation: 

   A notable advantage of EC over traditional cloud computing is its ability to distribute tasks across edge nodes, 

thus alleviating the need to upload all data to the cloud for computing and storage. This significantly liberates 

network bandwidth and other resources typically monopolized by cloud computing. However, efficient resource 

management solutions are essential due to the distributed nature of tasks across edge nodes with limited resources. 

    

3. Privacy and Security: 

   EC introduces novel challenges concerning data security and privacy. Some of these challenges stem from 

inherent issues in cloud computing, while others arise from the distributed and heterogeneous nature of EC itself. 

Conventional solutions for addressing data security and privacy concerns in cloud computing are not directly 

applicable to the decentralized computing model of EC. Hence, enhancing data security and privacy protection in 

EC warrants further attention from researchers. 

Conclusions 

While traditional methods have made commendable strides in addressing resource allocation, computing offloading, 

and security concerns in EC, they still exhibit certain shortcomings. These include a reliance on known underlying 

models, susceptibility to local optima convergence, and limited capacity for deep and high-dimensional data mining. 

Conversely, AI algorithms possess the potential to overcome these limitations, as they excel in adaptability, feature 

extraction, decision optimization, and prediction. The subsequent section will elucidate how AI algorithms optimize 

EC in light of these challenges. 

 

This section provides insights into the conceptual framework and motivations driving EC while highlighting the 

obstacles encountered in its development. Although traditional methods have achieved notable success in tackling 

these issues, there remains room for improvement. In the future, AI algorithms are poised to offer enhanced 

adaptability and efficiency in addressing evolving challenges within EC, particularly with abundant data and 

dynamic constraints. 
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