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Abstract 

The rapid evolution of machine learning models has led to an increased demand for efficient and streamlined 
processes in deploying these models from the training phase to production environments. This article explores the 
critical aspects of automating model deployment, focusing on the seamless transition from the development and 
training phase to the operational deployment in production settings.  
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 Introduction 
Introduction: 
Since the technology's birth, deploying machine learning models in a production setting has proven to be a constant 
difficulty. Professionals from a variety of fields, such as data scientists, machine learning engineers, front-end 
engineers, and production engineers, have struggled with the difficulties of teamwork in deploying models that are 
ready for usage in production throughout the years. Only a small percentage of machine learning programs 
successfully reach the production stage because, despite concentrated efforts, resolving the many challenges 
involved with this task remains elusive. 
A collection of methods and resources has developed in response to these difficulties in order to deal with the 
complexity of the machine learning lifecycle. Processes like data preprocessing, model building, training, 
assessment, deployment, and monitoring are intended to be made more efficient by these technologies. The toolkit 
keeps changing as artificial intelligence (AI) research and development progress. MLOps, or machine learning 
operations, is essentially the standardization and optimization of the administration of the machine learning 
lifecycle. 
But a closer look is necessary to understand why the machine learning lifecycle needs to be so carefully streamlined. 
Transferring a business challenge to a high-level machine learning model seems simple at first glance. However, the 
creation and implementation of numerous machine learning models in a real-world setting is still a relatively new 
undertaking for a lot of conventional firms. Up until recently, management was made easier by the manageable size 
of the models or the minimal interest in understanding these models on an enterprise-wide scale. 
The increasing prevalence of decision automation, which involves making decisions primarily without human 
involvement, highlights the need of models. At the same time, organizational risk management for these models 
becomes more important. MLOps is unique in that it plays a critical part in scaling machine learning initiatives to a 
scale where significant business value is realized, in addition to its function in reducing the risks associated with 
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machine learning models in production. 
MLOps discipline is required when scaling from a small number of models to tens, hundreds, or thousands that 
favorably impact business outcomes. In order to fully understand MLOps, one must have a thorough understanding 
of machine learning and all of its complexities. Although algorithm selection is frequently disregarded in the context 
of MLOps, it has a direct impact on MLOps operations and is crucial to the construction of machine learning 
models. At its core, machine learning is the study of computer algorithms that, instead of requiring explicit 
programming, learn from experience on their own. These algorithms build a software model that can make 
predictions by analyzing training data. 
Model Development 
1. Determining Business Goals  
A business aim, which might be as straightforward as lowering the percentage of fraudulent transactions to 0.1% or 
being able to identify faces in social media images, is usually the first step in the creation of a machine learning 
model. Business objectives, by definition, comprise cost limitations, performance targets, and needs for technical 
infrastructure. All of these elements can be recorded as key performance indicators, or KPIs, which make it possible 
to track the business performance of models that are being used in production. It is essential to realize that machine 
learning projects are usually a subset of bigger initiatives that impact people, processes, and technologies. Therefore, 
defining goals involves change management, which could offer some direction for developing the ML model. For 
instance, the necessary degree of openness will have a significant impact on algorithm selection and might 
necessitate the inclusion of explanations in addition to predictions in order to convert predictions into wise business 
decisions. Different MLOps Challenges, Different Ml Algorithms All machine learning algorithms rely on modeling 
patterns in historical data to draw conclusions; the accuracy and applicability of these models play a crucial role in 
the algorithms' performance. They vary in that every kind of algorithm has distinct qualities and poses different 
difficulties in MLOps. Algorithm selection may also be influenced by governance issues, even though some ML 
algorithms are better suited for particular use cases[1]. Opaque algorithms like neural networks are not allowed in 
highly regulated environments (financial services, for example), where judgments have to be justified. Decision 
trees and other simpler methods are required. Cost is frequently the trade-off rather than performance in many 
situations. Put differently, less sophisticated approaches usually require more costly human feature engineering to 
get the same degree of efficiency as more sophisticated ones.  
2. Sources of Data and Investigative Data Analysis 
 It's time to gather data scientists and subject matter experts to start building the ML model now that there are 
defined business objectives in place[2]. The first step in this process is to look for relevant input data. Although it 
can seem like a straightforward operation, actually finding the data can be the most challenging aspect of the 
process. It is always advantageous to comprehend the patterns in data before attempting to train models, as ML 
methods are dependent on data[3]. Techniques for exploratory data analysis (EDA) can help with the process of 
choosing potentially important features, identifying data cleaning requirements, and developing hypotheses about 
the data. EDA can be carried out statistically for more rigor or graphically for intuitive insight. 
Data Exploration 
Data scientists and analysts must first comprehend the nature of the data before considering data sources for model 
training. A model, even one trained by an algorithm, is only as good as the data it uses for training. Many problems, 
including inconsistency, correctness, incompleteness, and so on, may make any or all of the data unusable at this 
point. These procedures can include, for instance:  
• Examining the statistics that summarize the data and recording the methods used to gather the data and any 
presumptions that were made: Which column's domain is it? Do any rows have any missing values? Glaring errors? 
Unusual deviations? Not a single outlier? Analyzing the data distribution more closely; cleaning, filling, reshaping, 
filtering, clipping, sampling, etc.  
• Fitting distribution curves, performing statistical tests on certain subpopulations, and examining correlations 
between the various columns  
• Analyzing that data in relation to other models or data found in literature: Exists any customary information that 
appears to be absent? Is the distribution of this data comparable? Naturally, in order to make wise decisions 
throughout this exploration, subject expertise is needed. Certain abnormalities could be challenging to spot without 
specialized knowledge, and assumptions can lead to unexpected outcomes for the inexperienced eye. Industrial 
sensor data is a prime example. A data scientist may not know what is normal versus unusual outliers for a particular 
machine unless they are also an expert in mechanical engineering or equipment. 
3. Feature Engineering and Selection  
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Feature engineering and feature selection are typically the results of EDA. Feature engineering is the act of turning 
unprocessed data from chosen datasets into "features" that more accurately depict the core issue that needs to be 
resolved. "Features" consist of fixed-size arrays of numbers as machine learning algorithms can only comprehend 
them. A large portion of an ML project's effort can be attributed to the feature engineering step of data purification.  
● Techniques for Feature Engineering One-hot encoding is the most popular[4]. In contrast, inputs that are text or 
image-based require more complex engineering. Recent advances in deep learning have revolutionized this subject 
by producing models that translate text and visual data into tables of numbers that machine learning algorithms can 
exploit. Known as embeddings, these tables allow data scientists to do transfer learning because they may be applied 
to domains in which they haven't been trained before.  
● Selection of Features The question of how much and when to quit is a common one in feature design and 
selection. Increasing the number of features could lead to improved model accuracy, more equitable group division, 
or make up for other valuable missing data. It does, however, have several disadvantages, all of which could 
eventually have a big effect on MLOps plans. Heuristics are used in automated feature selection to determine the 
significance of a given feature on the predictive performance of the model. For instance, one can rapidly train a 
basic model on a representative portion of the data and then look at which features are the best predictors, or one can 
look at the correlation with the goal variable. 
4. Training and Evaluation  
Training comes next, following feature engineering and selection for data preparation. Iterative steps are involved in 
training and optimizing a new machine learning model: testing many algorithms, automatically generating features, 
adapting feature selections, and fine-tuning algorithm hyperparameters. Apart from its iterative character, training is 
the most computationally demanding stage in the life cycle of an ML model. In fact, this is the case in many 
scenarios. It gets harder and harder to remember the outcomes of each experiment when you iterate. The most 
frustrating thing for data scientists is when they can't remember the precise setup and so can't replicate the optimal 
outcomes. Remembering the data, choosing features and model parameters, and keeping track of performance 
indicators may all be made much easier using an experiment tracking tool. They make it possible to compare 
experiments side by side and identify variations in performance. Selecting the optimal solution requires taking into 
account both qualitative and quantitative factors, such as the algorithm's explainability or ease of deployment, as 
well as quantitative factors like accuracy or average error[3].  
● Trial and error 
 Throughout the whole process of developing a model, experiments are conducted, and most significant decisions or 
assumptions are supported by at least one experiment or body of prior research.Data scientists must be able to 
swiftly go over every option for each model when doing experiments. Fortunately, all of this can be done semi-
automatically with the help of tools; all that's required is defining what has to be tested (the space of possibilities) 
based on prior information (i.e., what makes sense) and restrictions (i.e., computation, budget). It quickly becomes 
impossible to try every possible combination of hyper parameter, feature processing, etc. As a result, it's helpful to 
establish a budget for time and/or computation for trials as well as an acceptable cutoff point for the model's utility 
(more on that idea in the following section). Thankfully, an increasing number of platforms for data science and 
machine learning make it possible to automate these workflows not just for the initial run but also for repeatability 
by preserving all processing actions. Some also permit the testing of theories through the use of experimental branch 
spin-offs and version control, which can subsequently be combined, abandoned, or retained.  
● Assessing and Comparing Frameworks 
 A British statistician from the 20th century named George E. P. Box famously stated that while all models are 
incorrect, some can be helpful. To put it another way, a model shouldn't strive to be flawless; instead, it should meet 
the criteria of being “good enough to be useful” while monitoring the uncanny valley, which is usually caused by 
models that appear to be performing well but actually perform poorly or disastrously for a particular subset of cases 
(such as an underrepresented population). In light of this, it's critical to assess a model within its historical context 
and possess the capacity to draw comparisons between it and prior models or rule-based processes in order to have a 
sense of the potential consequences of substituting the new model for the present model or decision-making process.  
 
Selecting Evaluation Measures Selecting the appropriate measure to assess and contrast various models for a certain 
issue may result in drastically different models. For instance, precision is frequently employed in automated 
classification tasks, however it is seldom the optimal choice when the classes are imbalanced, meaning that one of 
the possible outcomes is more improbable in comparison to the other. A model that consistently predicts the 
negative class is therefore 95% correct, but completely useless, in a binary classification problem where the positive 
class (i.e., the one that is useful to forecast because its prediction initiates an action) is rare, say 5% of occurrences. 
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Cross-testing, which involves evaluating a metric on a portion of the data that was not used for the model's training 
(a holdout dataset) might give an indication of how well a model will generalize. Metric evaluation and 
hyperparameter optimization are two examples of processes where some data is retained for assessment and the 
remaining portion is used for training or optimization. There are other approaches as well; it's not always a 
straightforward divide. For instance, data scientists rotate the portions they hold out to analyze and train several 
times in k-fold cross-validation. This increases the training time but provides a sense of the metric's stability. Data 
scientists frequently wish to retrain models on more recent data using the same features, hyperparameters, 
algorithms, and other elements. Obviously, comparing the two models and evaluating the performance of the 
updated version comes next. However, it's also critical to confirm that all prior hypotheses remain valid, such as that 
the problem hasn't changed much and that the earlier modeling decisions still make sense given the available facts. 
More precisely, this is a component of drift and performance monitoring. Regretfully, there isn't a metric that works 
for everyone. Selecting the appropriate one for the task at hand necessitates knowing the trade-offs and limitations 
of the measure (the mathematical side) and how they affect the model's optimization (the business side). 
5. Version Management and Reproducibility 
When evaluating and comparing models for a variety of reasons, including fairness as was just discussed, version 
control and reproducibility of various model versions are often brought up. Data scientists must be able to maintain 
consistency across all of the model iterations as they develop, test, and refine them. Reproducibility and version 
control meet two distinct needs:  
● Data scientists may find themselves experimenting, making a lot of various judgments, trying out new 
combinations, and then making a change when the expected results are not achieved. This entails being able to 
return to earlier iterations of the experiments—for instance, bringing a project back to its original state when the 
experimentation process reached a dead end.  
● Several years after the first experimentation, data scientists or other stakeholders (auditors, managers, etc.) might 
want the ability to reproduce the calculations that resulted in the model deployment for an audit team.  
● Reproducibility Even though most trials are short-lived, important iterations of a model need to be preserved for 
later use. Reproducibility, a fundamental idea in experimental science generally, is the topic at hand. Saving enough 
data about the environment in which the model was generated to enable its creation from scratch with identical 
outcomes is the aim of machine learning. Data scientists will find it difficult to confidently iterate on models without 
reproducibility, and they will have even less chance of transferring the model to DevOps to test if what was 
produced in the lab can be properly recreated in production. A record of the software environment and version 
control over all the parameters and assets—including training and assessment data—are essential for achieving true 
repeatability.  
6. Productionalization and Deployment  
A key element of MLOps is model productionalization and deployment, which poses an entirely other set of 
technological difficulties from model development[5]. The DevOps team and software engineers are in charge of it, 
and it is important to recognize the organizational difficulties in handling information sharing between data 
scientists and these groups. Failures or delays in deployment are inevitable in the absence of efficient teamwork. 
Types and Contents of Model Deployment Take a step back and consider the following questions to better 
understand what goes into production and what makes up a model: what goes into manufacturing exactly? Two 
categories are often used to categorize model deployment:  
● Model-as-a-service or live-scoring model Typically, the model is implemented in a straightforward framework to 
offer a real-time REST API endpoint that allows the API to access the resources needed to complete the task.  
● Integrated model In this instance, the model is put together as an application that is released. An application that 
offers batch-scoring of requests is a typical example. Depending on the technology being utilized, the components of 
to-be-deployed models can vary, but they usually consist of a collection of data artifacts and code (usually in the 
form of Python, R, or Java) [6]. Because using different versions may result in different model predictions, any of 
these may have runtime and package version dependencies that need to match in the production environment. Model 
export to a portable format (PMML, PFA, ONNX, or POJO) is one way to reduce reliance on the production 
environment. These are designed to make deployment easier and promote model portability between systems. But 
they have a price: only a small number of algorithms are supported by each format, and occasionally the portable 
models perform slightly differently from the original. Making the decision to employ a portable format requires a 
deep comprehension of the business and technological environment.[7] 
● Containerization 
 When deploying ML models, containerization is gaining popularity as a solution to dependencies-related issues. 
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Virtual machines can be replaced by lightweight container technologies like Docker, which enable the deployment 
of applications in separate, self-contained environments that are customized to meet the unique requirements of each 
model.They also make it possible to use the blue-green deployment technique to easily introduce new models. 
Multiple containers can also be used to elastically scale model compute resources. Multiple containers can be 
orchestrated by using on-premises and cloud-based technologies like Kubernetes.[8] 
● Environments at Runtime 
 Verifying that a model can be produced technically is the first step before submitting it to production. perfect Rapid, 
automated deployment is preferred by MLOps systems over labor-intensive procedures, and the approach that works 
best can be greatly influenced by runtime settings. Production environments come in many different shapes and 
sizes: JVMs running on embedded systems, Kubernetes clusters, specialized services like TensorFlow Serving, 
custom-built services, data science platforms, etc. The fact that various diverse production environments coexist in 
some organizations adds to the complexity of the situation.[9] 
Models that are operational in the development environment should ideally be validated and transferred to 
production exactly as is. This reduces the amount of work required for adaptation and increases the likelihood that 
the production model will behave similarly to the development model. Sadly, this ideal situation is not always 
achievable, and teams have been known to complete a lengthy project just to discover it cannot be implemented.  
Conversion of Development Environments to Production Environments When it comes to adaptation effort, on the 
one hand, the dev model can operate in production without any changes if the development and production 
platforms are from the same vendor or are otherwise interoperable. In this instance, a few clicks or instructions 
suffice to complete the technical procedures needed to send the model into production, freeing up all work to be 
directed toward validation. Conversely, there are situations in which a new implementation of the model is required, 
perhaps by a different team and using a different programming language. There aren't many situations these days 
where this strategy makes sense, given the costs and time involved. But it's still a reality in a lot of organizations, 
and it usually results from a lack of suitable procedures and tools. In actuality, a model won't enter production for 
months or even years if it is turned over to another team to reimplement and modify for the production environment. 
To make the model production compatible, a variety of changes can be made to it or its interactions with the 
environment in between these two extreme scenarios. Validation should never take place in the development 
environment; instead, it should always take place in an environment that is as similar to production as possible.  
● Tool-related factors Early consideration should be given to the format that must be used for submission to 
production, as this can significantly affect the model itself and the amount of effort needed to productionalize it. For 
instance, conversion is plainly needed when a model is constructed in a Python environment using scikit-learn and 
the production environment is Java-based and requires PMML or ONNX as input.  
● Performance-related factors Performance is another frequent reason that conversion could be necessary. For 
instance, a Python model converted to C++ will usually have a lower scoring latency than its equivalent in Python. 
Although it certainly relies on many circumstances, the final model may be dozens of times slower, the likelihood is 
that it will be dozens of times quicker.  
● Data Access Prior to Production Launch and Validation Data may occasionally be frozen and combined with the 
model. However, in situations where this isn't feasible (like when the dataset is too big or enrichment data must 
always be current), the production environment should be able to access a database. To do this, it needs to have the 
necessary network connectivity, installed libraries or drivers, authentication credentials saved in a production 
configuration, and the necessary libraries or drivers. In reality, managing this setup and configuration may be very 
difficult because, once again, it calls for the right tools and teamwork (especially when scaling to several dozen 
models). Model validation is especially more important when using external data access in production-like scenarios 
since production malfunctions are frequently caused by poor technological connectivity. 
7. Model Deployment Requirements 
What therefore needs to be taken care of throughout the productionalization phase, which occurs between the 
conclusion of model creation and the actual deployment into production? There's no denying that quick, automated 
deployments are always better than laborious ones. In many cases, self-service applications with limited lifespans 
don't need testing or validation. Fully automated single-step push-to-production might be more than sufficient if 
technologies such as Linux groups can properly cap the highest resource demands of the model [10]. With 
frameworks like Flask, handling numerous user interfaces is even doable while utilizing this lightweight deployment 
strategy. Apart from platforms that combine data science and machine learning, certain business rule management 
solutions might enable the automated implementation of fundamental machine learning models. A more 
comprehensive CI/CD pipeline is needed in use cases that involve customers and mission-critical operations. 
Usually, this includes:  
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Verifying that all requirements for coding, documentation, and sign-off have been fulfilled  
2. Replicate the model in a setting that resembles a production setting.  
3. Verifying the model's accuracy again  
4. Carrying out explainability analyses 
 5. Verifying that all governance criteria have been fulfilled  
6. Evaluating any data artifacts for quality  
7. Examining how resources are used when under stress  
8. Integrating, together with integration tests, into a more intricate application 
 
8. Monitoring  
A model must maintain good performance over time when it is put into production. However, various people have 
varied definitions of what constitutes good performance; this is especially true for the DevOps team, data scientists, 
and business.[11]  
● Issues with DevOps  
The well-known concerns of the DevOps team include things like: 1. Is the model doing the task rapidly enough?  
2. Is the memory and processing time being used appropriately? DevOps teams are accustomed to performing 
traditional IT performance monitoring in this manner. In this sense, ML models' resource needs are comparable to 
those of conventional software. 
It's crucial to take computing resource scalability into account. All things considered, using the knowledge now 
possessed by DevOps teams for resource management and monitoring to ML models is simple.  
● Concerns of Data Scientists  
The actual world never stops. A new kind of fraud that emerged in the previous three months will not be reflected in 
the training data that was used to create a fraud detection model six months ago. A model that generates 
advertisements is likely to create fewer and fewer appropriate advertisements as a website starts to draw in younger 
users. The performance will eventually reach an unacceptable level, requiring retraining of the model. How fast the 
real world changes and how accurate the model needs to be, but most crucially, how easy it is to create and 
implement an improved model, will dictate how often models need to be retrained.[12] 
 ● The actual truth  
In short, the ground truth is the right response to the query that the model was trained to answer.By obtaining the 
ground truth for each prediction a model has produced, one can assess the model's effectiveness. Sometimes a 
prediction is followed quickly by ground truth. 
 ● Drift in input 
 The theory behind input drift holds that a model can only make accurate predictions if the training data accurately 
depicts the real world. Hence, the model performance is probably affected if recent queries to a deployed model are 
compared to training data and show notable discrepancies. This serves as the basis for tracking input drift. The best 
thing about this strategy is that it doesn't require waiting for additional information or ground truth because all the 
data required for the test is already available. One of the most crucial elements of a flexible MLOps approach is 
recognizing drift, which can also increase the organization's overall enterprise AI efforts' adaptability.  
● Life Cycle and Iteration  
A crucial and challenging step in the MLOps life cycle is creating and implementing upgraded models. Model 
performance decline as a result of model drift is one of the reasons for creating a new version of the model, as was 
covered in the section before this one. Sometimes the data scientists have just improved the model's design, and 
other times there is a need to take into account more precise business objectives and KPIs. Repetition Every day, 
new training data is made available in certain industries that experience rapid change. The model is regularly 
automated for daily retraining and redeployment to guarantee that it appropriately represents current experience. 
Retraining a current model using the most recent training data is the simplest way to iterate a new model version. 
Nevertheless, there are still a lot of traps even with the feature selection and process remaining same. More 
particular still:  
● Does the newly acquired training data seem as anticipated? It is crucial to automatically validate the new data 
using pre-established metrics and checks.  
● Is the information consistent and full?  
● Do the feature distributions resemble those from the prior training set in general? Recall that the objective is to 
improve the model, not to drastically alter it. Examine the metrics between the newly created model version and the 
active model version. In order to accomplish this, the models need to be assessed using the same development 
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dataset—regardless of its most recent iteration. It is best to seek out manual intervention and avoid reusing 
automated scripts if measurements and checks reveal a major difference between the models.  
● Multiple development datasets based on scoring data reconciliation (with ground truth when it becomes available), 
data cleaning and validation, the prior model version, and a set of carefully considered checks are required, even in 
the "simple" automated retraining scenario with new training data. Automated redeployment is improbable because 
retraining in other contexts is probably considerably more difficult. 
 In large businesses, the live model scoring environment and the model retraining environment should typically be 
kept apart according to Feedback Loop DevOps best practices. It is therefore quite likely that a new model version 
will be evaluated in the retraining environment. Shadow testing, in which the updated model version is introduced 
into the actual environment alongside the current model, is one method of reducing this uncertainty. The current 
model version manages all live scoring; however, every new request is scored anew by the new model version, with 
the results logged but not given back to the requester. The outcomes can be statistically compared once both 
versions have scored a sufficient number of requests. Additionally, shadow scoring increases the SMEs' visibility on 
upcoming model iterations, which could facilitate a more seamless transition. 
Conclusion: 
For many organizations, putting machine learning models into production is a major challenge. MLOps is the 
cornerstone for ensuring deployed models are well-maintained, function as planned, and don't negatively impact the 
business as AI initiatives grow. As a result, using appropriate MLOps techniques is crucial. A machine learning 
(ML) model cannot realistically operate in production for years without updates, unlike normal software. Model 
predictions have an intrinsic deterioration that necessitates frequent retraining. Handling these updates by hand gets 
tiresome fast and is not scalable. The first step in automating processes is figuring out which metrics to track, when 
these data start to cause concern, and which indications are utilized to assess if a new model iteration is 
outperforming the old one. These difficulties emphasize how crucial it is to view MLOps as a whole, with the 
components originating from model design, construction, deployment, monitoring, and governance. We have spoken 
about how to address some of these problems in the development of contemporary machine learning systems in this 
work. 
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