

ISSN: 2959-6386 (Online), Vol. 2, Issue 3, 2023

Journal of Knowledge Learning and Science Technology

journal homepage: https://jklst.org/index.php/home

Automating Model Deployment: From Training to Production

Amandeep Singla1, Sandarsh Chavalmane2

Abstract

The rapid evolution of machine learning models has led to an increased demand for efficient and streamlined
processes in deploying these models from the training phase to production environments. This article explores the
critical aspects of automating model deployment, focusing on the seamless transition from the development and
training phase to the operational deployment in production settings.

Keywords: Automated Model Deployment, Model Training, Production Environment, Continuous Integration and
Continuous Deployment (CI/CD), Containerization, Orchestration Tools
.

Article Information:
Article history: Received:04/04/2023 Accepted:13/04/2023 Online: 14/04/2023 Published: 14/04/2023
DOI: https://doi.org/10.60087/jklst.vol2.n3.p347
i Correspondence author: Amandeep Singla

 Introduction
Introduction:
Since the technology's birth, deploying machine learning models in a production setting has proven to be a constant
difficulty. Professionals from a variety of fields, such as data scientists, machine learning engineers, front-end
engineers, and production engineers, have struggled with the difficulties of teamwork in deploying models that are
ready for usage in production throughout the years. Only a small percentage of machine learning programs
successfully reach the production stage because, despite concentrated efforts, resolving the many challenges
involved with this task remains elusive.
A collection of methods and resources has developed in response to these difficulties in order to deal with the
complexity of the machine learning lifecycle. Processes like data preprocessing, model building, training,
assessment, deployment, and monitoring are intended to be made more efficient by these technologies. The toolkit
keeps changing as artificial intelligence (AI) research and development progress. MLOps, or machine learning
operations, is essentially the standardization and optimization of the administration of the machine learning
lifecycle.
But a closer look is necessary to understand why the machine learning lifecycle needs to be so carefully streamlined.
Transferring a business challenge to a high-level machine learning model seems simple at first glance. However, the
creation and implementation of numerous machine learning models in a real-world setting is still a relatively new
undertaking for a lot of conventional firms. Up until recently, management was made easier by the manageable size
of the models or the minimal interest in understanding these models on an enterprise-wide scale.
The increasing prevalence of decision automation, which involves making decisions primarily without human
involvement, highlights the need of models. At the same time, organizational risk management for these models
becomes more important. MLOps is unique in that it plays a critical part in scaling machine learning initiatives to a
scale where significant business value is realized, in addition to its function in reducing the risks associated with

341 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Vol. 2, Issue 3, 2023

machine learning models in production.
MLOps discipline is required when scaling from a small number of models to tens, hundreds, or thousands that
favorably impact business outcomes. In order to fully understand MLOps, one must have a thorough understanding
of machine learning and all of its complexities. Although algorithm selection is frequently disregarded in the context
of MLOps, it has a direct impact on MLOps operations and is crucial to the construction of machine learning
models. At its core, machine learning is the study of computer algorithms that, instead of requiring explicit
programming, learn from experience on their own. These algorithms build a software model that can make
predictions by analyzing training data.
Model Development
1. Determining Business Goals
A business aim, which might be as straightforward as lowering the percentage of fraudulent transactions to 0.1% or
being able to identify faces in social media images, is usually the first step in the creation of a machine learning
model. Business objectives, by definition, comprise cost limitations, performance targets, and needs for technical
infrastructure. All of these elements can be recorded as key performance indicators, or KPIs, which make it possible
to track the business performance of models that are being used in production. It is essential to realize that machine
learning projects are usually a subset of bigger initiatives that impact people, processes, and technologies. Therefore,
defining goals involves change management, which could offer some direction for developing the ML model. For
instance, the necessary degree of openness will have a significant impact on algorithm selection and might
necessitate the inclusion of explanations in addition to predictions in order to convert predictions into wise business
decisions. Different MLOps Challenges, Different Ml Algorithms All machine learning algorithms rely on modeling
patterns in historical data to draw conclusions; the accuracy and applicability of these models play a crucial role in
the algorithms' performance. They vary in that every kind of algorithm has distinct qualities and poses different
difficulties in MLOps. Algorithm selection may also be influenced by governance issues, even though some ML
algorithms are better suited for particular use cases[1]. Opaque algorithms like neural networks are not allowed in
highly regulated environments (financial services, for example), where judgments have to be justified. Decision
trees and other simpler methods are required. Cost is frequently the trade-off rather than performance in many
situations. Put differently, less sophisticated approaches usually require more costly human feature engineering to
get the same degree of efficiency as more sophisticated ones.
2. Sources of Data and Investigative Data Analysis
 It's time to gather data scientists and subject matter experts to start building the ML model now that there are
defined business objectives in place[2]. The first step in this process is to look for relevant input data. Although it
can seem like a straightforward operation, actually finding the data can be the most challenging aspect of the
process. It is always advantageous to comprehend the patterns in data before attempting to train models, as ML
methods are dependent on data[3]. Techniques for exploratory data analysis (EDA) can help with the process of
choosing potentially important features, identifying data cleaning requirements, and developing hypotheses about
the data. EDA can be carried out statistically for more rigor or graphically for intuitive insight.
Data Exploration
Data scientists and analysts must first comprehend the nature of the data before considering data sources for model
training. A model, even one trained by an algorithm, is only as good as the data it uses for training. Many problems,
including inconsistency, correctness, incompleteness, and so on, may make any or all of the data unusable at this
point. These procedures can include, for instance:
• Examining the statistics that summarize the data and recording the methods used to gather the data and any
presumptions that were made: Which column's domain is it? Do any rows have any missing values? Glaring errors?
Unusual deviations? Not a single outlier? Analyzing the data distribution more closely; cleaning, filling, reshaping,
filtering, clipping, sampling, etc.
• Fitting distribution curves, performing statistical tests on certain subpopulations, and examining correlations
between the various columns
• Analyzing that data in relation to other models or data found in literature: Exists any customary information that
appears to be absent? Is the distribution of this data comparable? Naturally, in order to make wise decisions
throughout this exploration, subject expertise is needed. Certain abnormalities could be challenging to spot without
specialized knowledge, and assumptions can lead to unexpected outcomes for the inexperienced eye. Industrial
sensor data is a prime example. A data scientist may not know what is normal versus unusual outliers for a particular
machine unless they are also an expert in mechanical engineering or equipment.
3. Feature Engineering and Selection

Amandeep Singla et al., 2023 342

Feature engineering and feature selection are typically the results of EDA. Feature engineering is the act of turning
unprocessed data from chosen datasets into "features" that more accurately depict the core issue that needs to be
resolved. "Features" consist of fixed-size arrays of numbers as machine learning algorithms can only comprehend
them. A large portion of an ML project's effort can be attributed to the feature engineering step of data purification.
● Techniques for Feature Engineering One-hot encoding is the most popular[4]. In contrast, inputs that are text or
image-based require more complex engineering. Recent advances in deep learning have revolutionized this subject
by producing models that translate text and visual data into tables of numbers that machine learning algorithms can
exploit. Known as embeddings, these tables allow data scientists to do transfer learning because they may be applied
to domains in which they haven't been trained before.
● Selection of Features The question of how much and when to quit is a common one in feature design and
selection. Increasing the number of features could lead to improved model accuracy, more equitable group division,
or make up for other valuable missing data. It does, however, have several disadvantages, all of which could
eventually have a big effect on MLOps plans. Heuristics are used in automated feature selection to determine the
significance of a given feature on the predictive performance of the model. For instance, one can rapidly train a
basic model on a representative portion of the data and then look at which features are the best predictors, or one can
look at the correlation with the goal variable.
4. Training and Evaluation
Training comes next, following feature engineering and selection for data preparation. Iterative steps are involved in
training and optimizing a new machine learning model: testing many algorithms, automatically generating features,
adapting feature selections, and fine-tuning algorithm hyperparameters. Apart from its iterative character, training is
the most computationally demanding stage in the life cycle of an ML model. In fact, this is the case in many
scenarios. It gets harder and harder to remember the outcomes of each experiment when you iterate. The most
frustrating thing for data scientists is when they can't remember the precise setup and so can't replicate the optimal
outcomes. Remembering the data, choosing features and model parameters, and keeping track of performance
indicators may all be made much easier using an experiment tracking tool. They make it possible to compare
experiments side by side and identify variations in performance. Selecting the optimal solution requires taking into
account both qualitative and quantitative factors, such as the algorithm's explainability or ease of deployment, as
well as quantitative factors like accuracy or average error[3].
● Trial and error
 Throughout the whole process of developing a model, experiments are conducted, and most significant decisions or
assumptions are supported by at least one experiment or body of prior research.Data scientists must be able to
swiftly go over every option for each model when doing experiments. Fortunately, all of this can be done semi-
automatically with the help of tools; all that's required is defining what has to be tested (the space of possibilities)
based on prior information (i.e., what makes sense) and restrictions (i.e., computation, budget). It quickly becomes
impossible to try every possible combination of hyper parameter, feature processing, etc. As a result, it's helpful to
establish a budget for time and/or computation for trials as well as an acceptable cutoff point for the model's utility
(more on that idea in the following section). Thankfully, an increasing number of platforms for data science and
machine learning make it possible to automate these workflows not just for the initial run but also for repeatability
by preserving all processing actions. Some also permit the testing of theories through the use of experimental branch
spin-offs and version control, which can subsequently be combined, abandoned, or retained.
● Assessing and Comparing Frameworks
 A British statistician from the 20th century named George E. P. Box famously stated that while all models are
incorrect, some can be helpful. To put it another way, a model shouldn't strive to be flawless; instead, it should meet
the criteria of being “good enough to be useful” while monitoring the uncanny valley, which is usually caused by
models that appear to be performing well but actually perform poorly or disastrously for a particular subset of cases
(such as an underrepresented population). In light of this, it's critical to assess a model within its historical context
and possess the capacity to draw comparisons between it and prior models or rule-based processes in order to have a
sense of the potential consequences of substituting the new model for the present model or decision-making process.

Selecting Evaluation Measures Selecting the appropriate measure to assess and contrast various models for a certain
issue may result in drastically different models. For instance, precision is frequently employed in automated
classification tasks, however it is seldom the optimal choice when the classes are imbalanced, meaning that one of
the possible outcomes is more improbable in comparison to the other. A model that consistently predicts the
negative class is therefore 95% correct, but completely useless, in a binary classification problem where the positive
class (i.e., the one that is useful to forecast because its prediction initiates an action) is rare, say 5% of occurrences.

343 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Vol. 2, Issue 3, 2023

Cross-testing, which involves evaluating a metric on a portion of the data that was not used for the model's training
(a holdout dataset) might give an indication of how well a model will generalize. Metric evaluation and
hyperparameter optimization are two examples of processes where some data is retained for assessment and the
remaining portion is used for training or optimization. There are other approaches as well; it's not always a
straightforward divide. For instance, data scientists rotate the portions they hold out to analyze and train several
times in k-fold cross-validation. This increases the training time but provides a sense of the metric's stability. Data
scientists frequently wish to retrain models on more recent data using the same features, hyperparameters,
algorithms, and other elements. Obviously, comparing the two models and evaluating the performance of the
updated version comes next. However, it's also critical to confirm that all prior hypotheses remain valid, such as that
the problem hasn't changed much and that the earlier modeling decisions still make sense given the available facts.
More precisely, this is a component of drift and performance monitoring. Regretfully, there isn't a metric that works
for everyone. Selecting the appropriate one for the task at hand necessitates knowing the trade-offs and limitations
of the measure (the mathematical side) and how they affect the model's optimization (the business side).
5. Version Management and Reproducibility
When evaluating and comparing models for a variety of reasons, including fairness as was just discussed, version
control and reproducibility of various model versions are often brought up. Data scientists must be able to maintain
consistency across all of the model iterations as they develop, test, and refine them. Reproducibility and version
control meet two distinct needs:
● Data scientists may find themselves experimenting, making a lot of various judgments, trying out new
combinations, and then making a change when the expected results are not achieved. This entails being able to
return to earlier iterations of the experiments—for instance, bringing a project back to its original state when the
experimentation process reached a dead end.
● Several years after the first experimentation, data scientists or other stakeholders (auditors, managers, etc.) might
want the ability to reproduce the calculations that resulted in the model deployment for an audit team.
● Reproducibility Even though most trials are short-lived, important iterations of a model need to be preserved for
later use. Reproducibility, a fundamental idea in experimental science generally, is the topic at hand. Saving enough
data about the environment in which the model was generated to enable its creation from scratch with identical
outcomes is the aim of machine learning. Data scientists will find it difficult to confidently iterate on models without
reproducibility, and they will have even less chance of transferring the model to DevOps to test if what was
produced in the lab can be properly recreated in production. A record of the software environment and version
control over all the parameters and assets—including training and assessment data—are essential for achieving true
repeatability.
6. Productionalization and Deployment
A key element of MLOps is model productionalization and deployment, which poses an entirely other set of
technological difficulties from model development[5]. The DevOps team and software engineers are in charge of it,
and it is important to recognize the organizational difficulties in handling information sharing between data
scientists and these groups. Failures or delays in deployment are inevitable in the absence of efficient teamwork.
Types and Contents of Model Deployment Take a step back and consider the following questions to better
understand what goes into production and what makes up a model: what goes into manufacturing exactly? Two
categories are often used to categorize model deployment:
● Model-as-a-service or live-scoring model Typically, the model is implemented in a straightforward framework to
offer a real-time REST API endpoint that allows the API to access the resources needed to complete the task.
● Integrated model In this instance, the model is put together as an application that is released. An application that
offers batch-scoring of requests is a typical example. Depending on the technology being utilized, the components of
to-be-deployed models can vary, but they usually consist of a collection of data artifacts and code (usually in the
form of Python, R, or Java) [6]. Because using different versions may result in different model predictions, any of
these may have runtime and package version dependencies that need to match in the production environment. Model
export to a portable format (PMML, PFA, ONNX, or POJO) is one way to reduce reliance on the production
environment. These are designed to make deployment easier and promote model portability between systems. But
they have a price: only a small number of algorithms are supported by each format, and occasionally the portable
models perform slightly differently from the original. Making the decision to employ a portable format requires a
deep comprehension of the business and technological environment.[7]
● Containerization
 When deploying ML models, containerization is gaining popularity as a solution to dependencies-related issues.

Amandeep Singla et al., 2023 344

Virtual machines can be replaced by lightweight container technologies like Docker, which enable the deployment
of applications in separate, self-contained environments that are customized to meet the unique requirements of each
model.They also make it possible to use the blue-green deployment technique to easily introduce new models.
Multiple containers can also be used to elastically scale model compute resources. Multiple containers can be
orchestrated by using on-premises and cloud-based technologies like Kubernetes.[8]
● Environments at Runtime
 Verifying that a model can be produced technically is the first step before submitting it to production. perfect Rapid,
automated deployment is preferred by MLOps systems over labor-intensive procedures, and the approach that works
best can be greatly influenced by runtime settings. Production environments come in many different shapes and
sizes: JVMs running on embedded systems, Kubernetes clusters, specialized services like TensorFlow Serving,
custom-built services, data science platforms, etc. The fact that various diverse production environments coexist in
some organizations adds to the complexity of the situation.[9]
Models that are operational in the development environment should ideally be validated and transferred to
production exactly as is. This reduces the amount of work required for adaptation and increases the likelihood that
the production model will behave similarly to the development model. Sadly, this ideal situation is not always
achievable, and teams have been known to complete a lengthy project just to discover it cannot be implemented.
Conversion of Development Environments to Production Environments When it comes to adaptation effort, on the
one hand, the dev model can operate in production without any changes if the development and production
platforms are from the same vendor or are otherwise interoperable. In this instance, a few clicks or instructions
suffice to complete the technical procedures needed to send the model into production, freeing up all work to be
directed toward validation. Conversely, there are situations in which a new implementation of the model is required,
perhaps by a different team and using a different programming language. There aren't many situations these days
where this strategy makes sense, given the costs and time involved. But it's still a reality in a lot of organizations,
and it usually results from a lack of suitable procedures and tools. In actuality, a model won't enter production for
months or even years if it is turned over to another team to reimplement and modify for the production environment.
To make the model production compatible, a variety of changes can be made to it or its interactions with the
environment in between these two extreme scenarios. Validation should never take place in the development
environment; instead, it should always take place in an environment that is as similar to production as possible.
● Tool-related factors Early consideration should be given to the format that must be used for submission to
production, as this can significantly affect the model itself and the amount of effort needed to productionalize it. For
instance, conversion is plainly needed when a model is constructed in a Python environment using scikit-learn and
the production environment is Java-based and requires PMML or ONNX as input.
● Performance-related factors Performance is another frequent reason that conversion could be necessary. For
instance, a Python model converted to C++ will usually have a lower scoring latency than its equivalent in Python.
Although it certainly relies on many circumstances, the final model may be dozens of times slower, the likelihood is
that it will be dozens of times quicker.
● Data Access Prior to Production Launch and Validation Data may occasionally be frozen and combined with the
model. However, in situations where this isn't feasible (like when the dataset is too big or enrichment data must
always be current), the production environment should be able to access a database. To do this, it needs to have the
necessary network connectivity, installed libraries or drivers, authentication credentials saved in a production
configuration, and the necessary libraries or drivers. In reality, managing this setup and configuration may be very
difficult because, once again, it calls for the right tools and teamwork (especially when scaling to several dozen
models). Model validation is especially more important when using external data access in production-like scenarios
since production malfunctions are frequently caused by poor technological connectivity.
7. Model Deployment Requirements
What therefore needs to be taken care of throughout the productionalization phase, which occurs between the
conclusion of model creation and the actual deployment into production? There's no denying that quick, automated
deployments are always better than laborious ones. In many cases, self-service applications with limited lifespans
don't need testing or validation. Fully automated single-step push-to-production might be more than sufficient if
technologies such as Linux groups can properly cap the highest resource demands of the model [10]. With
frameworks like Flask, handling numerous user interfaces is even doable while utilizing this lightweight deployment
strategy. Apart from platforms that combine data science and machine learning, certain business rule management
solutions might enable the automated implementation of fundamental machine learning models. A more
comprehensive CI/CD pipeline is needed in use cases that involve customers and mission-critical operations.
Usually, this includes:

345 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Vol. 2, Issue 3, 2023

Verifying that all requirements for coding, documentation, and sign-off have been fulfilled
2. Replicate the model in a setting that resembles a production setting.
3. Verifying the model's accuracy again
4. Carrying out explainability analyses
 5. Verifying that all governance criteria have been fulfilled
6. Evaluating any data artifacts for quality
7. Examining how resources are used when under stress
8. Integrating, together with integration tests, into a more intricate application

8. Monitoring
A model must maintain good performance over time when it is put into production. However, various people have
varied definitions of what constitutes good performance; this is especially true for the DevOps team, data scientists,
and business.[11]
● Issues with DevOps
The well-known concerns of the DevOps team include things like: 1. Is the model doing the task rapidly enough?
2. Is the memory and processing time being used appropriately? DevOps teams are accustomed to performing
traditional IT performance monitoring in this manner. In this sense, ML models' resource needs are comparable to
those of conventional software.
It's crucial to take computing resource scalability into account. All things considered, using the knowledge now
possessed by DevOps teams for resource management and monitoring to ML models is simple.
● Concerns of Data Scientists
The actual world never stops. A new kind of fraud that emerged in the previous three months will not be reflected in
the training data that was used to create a fraud detection model six months ago. A model that generates
advertisements is likely to create fewer and fewer appropriate advertisements as a website starts to draw in younger
users. The performance will eventually reach an unacceptable level, requiring retraining of the model. How fast the
real world changes and how accurate the model needs to be, but most crucially, how easy it is to create and
implement an improved model, will dictate how often models need to be retrained.[12]
 ● The actual truth
In short, the ground truth is the right response to the query that the model was trained to answer.By obtaining the
ground truth for each prediction a model has produced, one can assess the model's effectiveness. Sometimes a
prediction is followed quickly by ground truth.
 ● Drift in input
 The theory behind input drift holds that a model can only make accurate predictions if the training data accurately
depicts the real world. Hence, the model performance is probably affected if recent queries to a deployed model are
compared to training data and show notable discrepancies. This serves as the basis for tracking input drift. The best
thing about this strategy is that it doesn't require waiting for additional information or ground truth because all the
data required for the test is already available. One of the most crucial elements of a flexible MLOps approach is
recognizing drift, which can also increase the organization's overall enterprise AI efforts' adaptability.
● Life Cycle and Iteration
A crucial and challenging step in the MLOps life cycle is creating and implementing upgraded models. Model
performance decline as a result of model drift is one of the reasons for creating a new version of the model, as was
covered in the section before this one. Sometimes the data scientists have just improved the model's design, and
other times there is a need to take into account more precise business objectives and KPIs. Repetition Every day,
new training data is made available in certain industries that experience rapid change. The model is regularly
automated for daily retraining and redeployment to guarantee that it appropriately represents current experience.
Retraining a current model using the most recent training data is the simplest way to iterate a new model version.
Nevertheless, there are still a lot of traps even with the feature selection and process remaining same. More
particular still:
● Does the newly acquired training data seem as anticipated? It is crucial to automatically validate the new data
using pre-established metrics and checks.
● Is the information consistent and full?
● Do the feature distributions resemble those from the prior training set in general? Recall that the objective is to
improve the model, not to drastically alter it. Examine the metrics between the newly created model version and the
active model version. In order to accomplish this, the models need to be assessed using the same development

Amandeep Singla et al., 2023 346

dataset—regardless of its most recent iteration. It is best to seek out manual intervention and avoid reusing
automated scripts if measurements and checks reveal a major difference between the models.
● Multiple development datasets based on scoring data reconciliation (with ground truth when it becomes available),
data cleaning and validation, the prior model version, and a set of carefully considered checks are required, even in
the "simple" automated retraining scenario with new training data. Automated redeployment is improbable because
retraining in other contexts is probably considerably more difficult.
 In large businesses, the live model scoring environment and the model retraining environment should typically be
kept apart according to Feedback Loop DevOps best practices. It is therefore quite likely that a new model version
will be evaluated in the retraining environment. Shadow testing, in which the updated model version is introduced
into the actual environment alongside the current model, is one method of reducing this uncertainty. The current
model version manages all live scoring; however, every new request is scored anew by the new model version, with
the results logged but not given back to the requester. The outcomes can be statistically compared once both
versions have scored a sufficient number of requests. Additionally, shadow scoring increases the SMEs' visibility on
upcoming model iterations, which could facilitate a more seamless transition.
Conclusion:
For many organizations, putting machine learning models into production is a major challenge. MLOps is the
cornerstone for ensuring deployed models are well-maintained, function as planned, and don't negatively impact the
business as AI initiatives grow. As a result, using appropriate MLOps techniques is crucial. A machine learning
(ML) model cannot realistically operate in production for years without updates, unlike normal software. Model
predictions have an intrinsic deterioration that necessitates frequent retraining. Handling these updates by hand gets
tiresome fast and is not scalable. The first step in automating processes is figuring out which metrics to track, when
these data start to cause concern, and which indications are utilized to assess if a new model iteration is
outperforming the old one. These difficulties emphasize how crucial it is to view MLOps as a whole, with the
components originating from model design, construction, deployment, monitoring, and governance. We have spoken
about how to address some of these problems in the development of contemporary machine learning systems in this
work.
Reference List:
1. (2023). Towards a safe MLOps Process for the Continuous Development and Safety
 Assurance of ML-based Systems in the Railway Domain. doi: 10.48550/arxiv.2307.02867
2. Ayesha, Tabassam. (2023). MLOps: A Step Forward to Enterprise Machine Learning. arXiv.org, doi:
10.48550/arXiv.2305.19298
3. Boris, Bertolt, von, Siandje. (2023). MLOps: A Step Forward to Enterprise Machine Learning. doi:
10.48550/arxiv.2305.19298
4. Sibanjan, Das., Pradip, Kumar, Bala. (2023). What drives MLOps adoption? An analysis using the TOE
framework. Journal of Decision Systems, doi: 10.1080/12460125.2023.2214306
5. Lincoln, Costa. (2023). An investigation of challenges in the machine learning lifecycle and the importance of
MLOps: A survey. Anais do Computer on the Beach, doi: 10.14210/cotb.v14.p379-386
6. A. Singla, D. Sharma and S. Vashisth, "Data connectivity in flights using visible light communication," 2017
International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), Gurgaon,
India, 2017, pp. 71-74, doi: https://doi.org/10.1109/IC3TSN.2017.8284453

7. F. Lin et al., "Predicting Remediations for Hardware Failures in Large-Scale Datacenters," 2020 50th Annual
IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S),
Valencia, Spain, 2020, pp. 13-16, doi: https://doi.org/10.1109/DSN-S50200.2020.00016

8. N. Sullhan and T. Singh, "Blended services & enabling seamless lifestyle," 2007 International Conference on IP
Multimedia Subsystem Architecture and Applications, Bangalore, India, 2007, pp. 1-5, doi:
https://doi.org/10.1109/IMSAA.2007.4559085

 9. Building for scale . (n.d.). https://scholar.google.com/citations?view_op=view_citation&hl=en&user=jwV-

mi8AAAAJ&citation_for_view=jwV-mi8AAAAJ:zYLM7Y9cAGgC

10. Wu, K. M., & Chen, J. (2023). Cargo operations of Express Air. Engineering Advances, 3(4), 337–341.

347 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Vol. 2, Issue 3, 2023

https://doi.org/10.26855/ea.2023.08.012

11. Wu, K. (2023). Creating panoramic images using ORB feature detection and RANSAC-based image alignment.

Advances in Computer and Communication, 4(4), 220–224. https://doi.org/10.26855/acc.2023.08.002

12. Liu, S., Wu, K., Jiang, C. X., Huang, B., & Ma, D. (2023). Financial Time-Series Forecasting: towards
synergizing performance and interpretability within a hybrid machine learning approach. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2401.00534

