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Abstract 

This paper proposes a novel privacy-preserving federated learning framework enhanced with adaptive differential privacy for 

secure medical data collaboration. The framework addresses critical challenges in protecting patient privacy while enabling 

effective collaborative model training across healthcare institutions. We introduce a dual-layer privacy protection mechanism 

that combines local and central differential privacy, dynamically adjusting privacy budget allocation based on training progress 

and data sensitivity. The framework implements a hierarchical architecture with edge servers performing preliminary aggregation 

to reduce communication overhead and enhance privacy protection. A novel adaptive privacy budget allocation strategy is 

developed to optimize the privacy-utility trade-off throughout the training process. The framework incorporates robust 

aggregation mechanisms to handle data heterogeneity while maintaining privacy guarantees. Theoretical analysis establishes 

convergence properties and privacy bounds under various operating conditions. Experimental evaluation of real-world medical 

datasets demonstrates that our framework achieves 92.5% accuracy while reducing privacy loss by 85% compared to baseline 

methods. The framework shows strong resistance to various privacy attacks, with membership inference attack success rates 

reduced by 87%. The results validate the framework's effectiveness in enabling secure and efficient collaborative learning in 

healthcare settings while maintaining strict privacy protection for sensitive medical data. 
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1. Introduction 

1.1 Background and Motivation 

With the rapid development of artificial intelligence and big 

data, deep learning has achieved great success in medicine, 
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especially in disease diagnosis, treatment planning, and anal-

ysis of medical imaging. Hospitals generate a large amount of 

medical information every day, including electronic health 

records (EHRs), medical records, and genomics[1]. This valu-

able information has great potential for improving health ser-

vices and supporting medical research. However, medical rec-

ords contain sensitive personal information, making data shar-

ing and integration difficult due to privacy restrictions and pri-

vacy concerns. 

The centralized training system requires all training materi-

als to be collected in a centralized location, which is a major 

concern in health care. Hospitals are often reluctant to share 

their patient information due to privacy laws such as HIPAA 

and GDPR. This data extraction creates “data silos” that hin-

der the development of robust and comprehensive AI clinical 

models. The increased need for privacy-preserving medical 

information has led to the emergence of new educational sys-

tems. 

Federated learning (FL) has emerged as a promising solu-

tion to enable collaborative model training while keeping data 

locally stored at medical institutions. In the FL framework, 

participating institutions train models on their local datasets 

and only share model parameters or gradients with a central 

server for aggregation[2]. This "data stays local, models move" 

approach significantly reduces privacy risks compared to tra-

ditional centralized learning. However, recent studies have 

shown that even sharing model parameters can still leak sen-

sitive information through various inference attacks, including 

membership inference and model inversion attacks. 

1.2 Research Challenges  

The integration of privacy-preserving mechanisms in med-

ical federated learning faces several critical challenges that 

need to be carefully addressed: 

Privacy Protection: While federated learning provides a 

basic level of privacy by keeping raw data local, the shared 

model parameters can still reveal sensitive information about 

the training data. Advanced privacy-preserving techniques are 

needed to prevent privacy leakage through model parameter 

sharing. The challenge lies in quantifying and controlling the 

privacy loss while maintaining model utility. 

Model Performance: Adding noise to self-defence inevita-

bly affects model performance. Medical applications often re-

quire accuracy and reliability, making it very important to bal-

ance privacy and utility models. Finding the best trade-off be-

tween guaranteeing privacy and quality standards remains dif-

ficult, especially for complex healthcare projects. 

Good communication: The nature of the government's edu-

cation requires communication between the hospitals and the 

central server. Privacy-preserving mechanisms often intro-

duce additional communication. In healthcare facilities with 

limited capacity, creating effective communication systems 

while self-regulating has proven to be a major challenge. 

Heterogeneous Data Distribution: Medical data across het-

erogeneous institutions highlight the importance of data qual-

ity, quantity, and distribution. This non-IID (Independent and 

Identically Distributed) nature of medical data complicates the 

privacy budget allocation and model convergence analysis[3]. 

System Security: The federated learning system must be ro-

bust against various security threats, including malicious par-

ticipants and external attackers. Ensuring system security 

while preserving privacy and maintaining model performance 

requires careful consideration of threat models and defence 

mechanisms. 

1.3 Research Contributions 

This paper proposes a new privacy-preserving framework 

for medical information-sharing modelling that integrates pri-

vacy-preserving processes with government learning. Our 

main contributions are summarized as follows[4]. 

We create a privacy-assurance-responsible educational sys-

tem specifically for medical use. The framework involves 

changing the privacy gap to protect privacy from shared mod-

els. Our solution provides theoretical privacy guarantees while 

considering the unique characteristics of medical data collab-

oration. 

We develop an innovative adaptive privacy budget alloca-

tion strategy that dynamically adjusts the noise level based on 

training progress and model convergence status. This ap-

proach optimizes the privacy-utility trade-off by allocating 

larger privacy budgets in later training stages when gradients 

become more precise and sensitive to noise perturbation[5]. 

The strategy ensures effective privacy protection while mini-

mizing the impact on model performance. 

We propose a novel model aggregation mechanism that ac-

counts for both data heterogeneity and privacy requirements 

across different medical institutions. The mechanism incorpo-

rates weighted aggregation and gradient clipping techniques 

to enhance model convergence under privacy constraints. We 

provide a theoretical analysis of the convergence properties 

and privacy guarantees of our proposed framework. 

We conduct extensive tests on real-world clinical data to 

evaluate the effectiveness of our proposed methods. The re-

sults show that our method achieves better performance com-

pared to existing privacy-management studies in the govern-

ment in terms of accuracy, privacy protection, and good com-

munication[6]. We also provide privacy checks and security 

measures against various attack scenarios. 

The proposed guidelines address key issues in privacy-han-

dling health information collaboration and provide practical 

solutions for safe and effective sharing. Modelling training in 

clinical use. Our work contributes to the advancement of pri-

vacy-preserving machine learning in the medical field and 

supports data security at hospitals.  
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2. Related Works 

2.1 Federated Learning Applications in 

Healthcare 

Federated learning has emerged as a revolutionary approach 

in clinical data analysis, enabling collaborative model training 

while preserving data privacy. Recent studies have shown sig-

nificant progress in the use of government education for vari-

ous medical conditions. The work by Lu et al. implemented a 

federated learning framework for computational pathology, 

achieving promising results in large-scale pathology da-

tasets[7]. Their approach incorporated weakly supervised 

learning techniques and developed a practical federated learn-

ing software package specifically designed for medical appli-

cations. 

Medical image analysis represents a crucial application do-

main for federated learning. Research has shown that feder-

ated learning can effectively handle the heterogeneous nature 

of medical imaging data across different institutions[8]. A no-

table advancement in this area includes the development of 

privacy-preserved federation frameworks for medical image 

segmentation and classification tasks. This system has proven 

to be able to maintain high diagnostic accuracy while main-

taining patient information privacy. 

In electronic health records (EHRs), government education 

has shown great potential in predictive analytics and clinical 

decision support[9]. Studies have explored the use of federal 

education for the analysis of distributed EHR data, solving 

problems related to data heterogeneity and institutional pri-

vacy regulations. The integration of federated learning with 

existing healthcare information systems has enabled collabo-

rative research without compromising patient confidentiality. 

2.2 Differential Privacy Techniques 

Differentiated privacy has become an important technique 

in maintaining the privacy of machine learning, providing 

strict mathematical confidentiality guarantees. In the context 

of the protection of medical information, different privacy sys-

tems have been adapted to solve specific problems in medical 

use. Recent research has focused on developing a unique pri-

vacy policy that can manage the nature of medical information 

while controlling the use of electronic devices for teaching 

practice patterns. 

The fundamental concepts of differential privacy include 

the privacy budget (ε) and noise mechanisms such as Lapla-

cian and Gaussian perturbations. These mechanisms add cali-

brated noise to the data or model parameters to prevent the 

inference of individual records. In medical applications, the 

selection of appropriate noise mechanisms and privacy param-

eters is crucial due to the high sensitivity of health data[10]. 

Advanced differential privacy frameworks have been de-

veloped to enhance privacy protection in distributed learning 

settings. These frameworks incorporate various noise addition 

strategies, including gradient perturbation and output pertur-

bation. Recent work has explored the combination of different 

privacy mechanisms to achieve optimal privacy-utility trade-

offs in medical data analysis. 

2.3 Privacy-Preserving Medical Data Sharing 

Privacy-preserving medical information sharing presents 

unique challenges due to regulatory and health information re-

quirements. Current research is focused on developing a gen-

eral framework that integrates multiple privacy-preserving 

features. These frameworks typically combine federated 

learning architectures with differential privacy mechanisms to 

provide enhanced protection for medical data. 

Recent studies have investigated the use of secure multi-

party computing and homomorphic encryption concerning 

privacy differences in medical data-sharing situations. The in-

tegration of these technologies has shown great results in pro-

tecting patient privacy while enabling effective research col-

laboration. Advanced encryption schemes have been devel-

oped to secure model parameter transmission in federated 

learning systems[11]. 

Research has also addressed the challenges of data hetero-

geneity and quality variation in medical data sharing. Novel 

approaches have been proposed to handle non-IID data distri-

butions across different medical institutions while maintaining 

privacy guarantees. These methods incorporate adaptive 

learning rates and specialized aggregation mechanisms to im-

prove model performance under privacy constraints. 

2.4 Adaptive Privacy Budget Allocation 

Adaptive privacy budget allocation represents a significant 

advancement in privacy-preserving federated learning. Tradi-

tional static privacy budget allocation methods often fail to 

optimize the privacy-utility trade-off throughout the training 

process. Recent research has focused on developing dynamic 

allocation strategies that adjust privacy parameters based on 

training progress and model convergence. 

The work by Chen et al. proposed a multi-agent reinforce-

ment learning approach for privacy budget allocation in fed-

erated learning. Their method dynamically adjusts noise levels 

across different communication rounds to optimize model per-

formance while maintaining privacy guarantees[12]. The ap-

proach demonstrates superior performance compared to uni-

form and fixed allocation strategies. 

Recent studies have explored the relationship between gra-

dient magnitudes and optimal privacy budget allocation. Re-

search has shown that the impact of noise on model training 

varies significantly across different training stages. Advanced 
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allocation strategies have been developed to account for these 

variations, allocating larger privacy budgets during critical 

training phases where gradient information is more valuable. 

Theoretical analysis of adaptive privacy budget allocation 

has provided insights into the convergence properties and pri-

vacy guarantees of these systems. Research has established 

mathematical frameworks for analyzing the trade-off between 

privacy protection and model utility under dynamic budget al-

location schemes. These theoretical foundations have guided 

the development of practical allocation strategies for medical 

applications. 

The effectiveness of adaptive privacy budget allocation has 

been demonstrated through extensive experimental evalua-

tions. Studies have shown improved model performance and 

privacy protection compared to static allocation methods. 

These results highlight the importance of considering training 

dynamics in privacy budget allocation for medical federated 

learning systems.  

3. System Model and Problem Formulation 

3.1 System Architecture 

The proposed privacy-preserving medical federated learn-

ing framework consists of multiple medical institutions, edge 

servers, and a central aggregation server. A hierarchical struc-

ture is designed to efficiently handle the distributed nature of 

medical data while maintaining privacy guarantees. Table 1 

presents the key components and their responsibilities within 

the system architecture. 

Table 1: System Components and Responsibilities 

Component  Role Key Functions 

Medical 

Institutions 

 Local Data 

Holders 

Model Training, DP Noise 

Addition 

Edge Servers 
 Regional 

Aggregators 

Parameter Collection, 

Initial Aggregation 

Central Server 
 Global Model 

Coordinator 

Global Aggregation, 

Model Distribution 

Privacy 

Module 

 Security 

Controller 

Budget Allocation, Noise 

Calibration 

 

In each training round, medical institutions perform local 

model updates using their private datasets. The local model 

parameters are protected through differential privacy 

mechanisms before being transmitted to edge servers. Table 2 

illustrates the communication protocol between different sys-

tem components. 

Table 2: Communication Protocol Specifications 

Communication 

Path 
Frequency Data Type 

Protection 

Mechanism 

Client → Edge 
Every 

round 

Model 

Parameters 
Local DP 

Edge → Central 
Every K 

rounds 

Aggregated 

Updates 
Regional DP 

Central → Edge 
Every K 

rounds 

Global 

Model 

Encrypted 

Channel 

Edge → Client 
Every K 

rounds 

Updated 

Model 

Encrypted 

Channel 

    

 
 

Figure 1: Hierarchical Federated Learning Architecture with Pri-

vacy Protection 

This figure presents a comprehensive visualization of the 

system architecture, depicting the hierarchical relationships 

between components. The diagram shows multiple layers: 

medical institutions at the bottom layer (represented by differ-

ent coloured nodes), edge servers in the middle layer (shown 

as hexagonal nodes), and the central server at the top (depicted 

as a large pentagon). Directed arrows indicate data flow paths, 

with different line styles representing various types of com-

munication channels. The visualization includes privacy mod-

ules (shown as shield icons) at each level. 

The system implements a multi-level aggregation strategy 

to reduce communication overhead and enhance privacy pro-

tection. Edge servers perform preliminary aggregation of 

model updates from nearby medical institutions, while the 

central server coordinates global model convergence[13]. Table 
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3 outlines the aggregation strategy parameters. 

Table 3: Aggregation Strategy Parameters 

Parameter 
Value 

Range 
Description 

Local Training Epochs [1, 10] 
Per-round local 

updates 

Edge Aggregation 

Interval 
[2, 5] 

Regional sync 

frequency 

Global Sync Frequency [5, 20] Complete model sync 

Privacy Budget Split [0.2, 0.5] Budget allocation ratio 

3.2 Threat Model and Security Goals 

The threat model considers both passive and active adver-

saries in the federated learning system. We classify potential 

threats into three categories based on their capabilities and at-

tack vectors. Table 4 presents a comprehensive threat analysis 

framework. 

Table 4: Threat Analysis Framework 

Threat Type 
Attack Vec-

tor 

Impact 

Level 

Defence Mech-

anism 

Parameter 

Inference 

Model 

Updates 
Medium Gradient Noise 

Membership 

Inference 

Model 

Outputs 
High 

Output 

Perturbation 

Model Poisoning 
Training 

Process 
Critical 

Robust 

Aggregation 

 

Figure 2: Multi-level Defense Architecture Against Privacy Attacks 

 

This visualization demonstrates the multi-layered defence 

mechanisms implemented in our system. The figure consists 

of concentric circles representing different protection layers. 

The innermost circle represents the core data protection, sur-

rounded by layers of differential privacy, secure aggregation, 

and communication encryption. Each layer is colour-coded 

based on its security level, with detailed annotations showing 

the specific protection mechanisms and their interactions. 

3.3 Medical Data Privacy Requirements 

Medical data privacy requirements are formulated based on 

regulatory standards and institutional policies. The framework 

implements a comprehensive privacy protection scheme that 

addresses multiple aspects of data security[14]. The privacy 

preservation mechanism operates at both local and global lev-

els, ensuring end-to-end protection of sensitive medical infor-

mation. 

 

Figure 3: Privacy Budget Consumption Analysis 
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This figure illustrates the relationship between privacy 

budget consumption and model training progress. The x-axis 

represents training rounds, while the y-axis shows the remain-

ing privacy budget. Multiple curves demonstrate different 

budget allocation strategies, with colour gradients indicating 

the privacy protection level. The visualization includes confi-

dence intervals and critical points where budget allocation 

policies change. 

3.4 Problem Definition 

The optimization problem for privacy-preserving federated 

learning in medical applications is formulated as follows: 

min L(w) = Σ(pi * Li(w)) 

Subject to: 

ε-differential privacy constraints 

Communication bandwidth limitations 

Model performance requirements 

System security constraints 

where L(w) represents the global loss function, pi denotes 

the weight of each medical institution, and Li(w) is the local 

loss function. The optimization problem addresses multiple 

competing objectives, including model accuracy, privacy 

preservation, and communication efficiency. 

The adaptive privacy budget allocation problem is defined 

as a constrained optimization problem: 

max Accuracy(M) 

subject to: 

Σ εi ≤ εtotal 

δi ≤ δmax 

Ti ≤ Tmax 

Where εi represents the privacy budget allocated to round I, 

δi is the failure probability, and Ti denotes the computation 

time. The solution space is characterized by the trade-offs be-

tween these constraints and the overall system objectives. 

The mathematical formulation incorporates both local and 

global privacy requirements, establishing a rigorous frame-

work for analyzing and implementing privacy-preserving 

mechanisms in medical federated learning systems. This for-

malization enables systematic analysis of privacy guarantees 

and performance bounds under various operating conditions.  

4. Proposed Framework 

4.1 Framework Overview 

The proposed privacy-preserving medical federated learn-

ing framework integrates adaptive differential privacy with hi-

erarchical federated learning architecture. The framework in-

corporates multiple protection layers and dynamic privacy 

budget allocation mechanisms to achieve optimal privacy-util-

ity trade-offs[15]. Table 5 presents the key components and 

their operational parameters in the framework. 

Table 5: Framework Components and Parameters 

Component Parameters 
Function 

Description 

Local Training 

Module 
Epochs: [1-10] 

Client-side model 

updates 

Privacy Engine 
ε: [0.1-1.0], δ: [1e-

5] 
DP noise generation 

Aggregation 

Module 
Rounds: [5-20] 

Model parameter 

fusion 

Budget Allocator 
Growth rate: [0.1-

0.5] 

Dynamic budget 

control 

 

 

Figure 4: Framework Architecture and Data Flow 

This visualization presents a comprehensive overview of 

the proposed framework's architecture. The diagram consists 

of multiple interconnected modules arranged in a hierarchical 

structure. The visualization employs different geometric 

shapes to represent various components: hexagons for medical 

institutions, circles for privacy modules, and rectangles for ag-

gregation components. Arrows with varying thicknesses indi-

cate data flow volumes, while colour gradients represent pri-

vacy protection levels. 

The framework employs a dual-phase protection mecha-

nism combining local differential privacy at medical institu-

tions and central differential privacy at aggregation servers. 

Table 6 outlines the protection mechanisms at different frame-

work levels. 
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Table 6: Multi-level Protection Mechanisms 

Level Protection Method 
Privacy 

Guarantee 

Institution Level 
Local DP + 

Encryption 
ε-LDP 

Edge Server Level Secure Aggregation (ε,δ)-DP 

Central Server 

Level 
Global DP ρ-CDP 

4.2 Adaptive Differential Privacy Mechanism 

The adaptive differential privacy mechanism dynamically 

adjusts noise levels based on training progress and data sensi-

tivity. The mechanism implements a novel noise calibration 

approach that considers both local and global privacy require-

ments. Table 7 presents the noise calibration parameters for 

different data types. 

Table 7: Noise Calibration Parameters 

Data Type 
Sensitivity 

Range 

Noise 

Scale 

Numerical Fea-

tures 
[0.1-1.0] Gaussian 

Categorical Fea-

tures 
[0.5-2.0] Laplacian 

Time Series Data [0.3-1.5] Mixed 

 

Figure 5: Adaptive Noise Calibration Process 

 

The figure illustrates the dynamic noise adjustment process 

across training rounds. The visualization consists of multiple 

subplots: the top plot shows noise level variations over time, 

the middle plot displays privacy budget consumption, and the 

bottom plot represents model accuracy. Each subplot uses dif-

ferent colour schemes to highlight the relationships between 

these metrics, with dashed lines indicating threshold values 

and gradient-filled areas showing acceptable ranges. 

4.3 Privacy Budget Allocation Strategy 

The privacy budget allocation strategy implements a dy-

namic approach that optimizes budget distribution across 

training rounds. The strategy considers both immediate pri-

vacy needs and long-term training objectives. Table 8 outlines 

the budget allocation parameters and their adjustment rules. 

Table 8: Privacy Budget Allocation Parameters 

Phase Budget Ratio 
Adjustment Fac-

tor 

Initial Phase 20% 0.8 

Middle Phase 50% 1.2 

Final Phase 30% 1.5 

 

Figure 6: Multi-dimensional Privacy Budget Optimization 

This figure presents a multi-dimensional visualization of 

the privacy budget optimization process. The 3D plot shows 

the relationships between privacy budget allocation, model 

performance, and training progress. The x-axis represents 

training rounds, the y-axis shows privacy budget consumption, 

and the z-axis indicates model performance metrics. Surface 

plots with varying colours demonstrate different allocation 
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strategies, while contour lines project the relationships onto 

2D planes. 

4.4 Model Aggregation Process 

The model aggregation process incorporates weighted pa-

rameter averaging with privacy-preserving mechanisms. The 

process implements a novel aggregation algorithm that ac-

counts for data heterogeneity and privacy requirements. Table 

9 details the aggregation parameters and their impact on 

model convergence. 

Table 9: Aggregation Process Parameters 

Parameter Value Range Impact Factor 

Weight Decay [0.95-0.99] High 

Momentum [0.85-0.95] Medium 

Learning Rate [0.01-0.1] Critical 

 

The aggregation algorithm is formulated as: 

w(t+1) = Σ(αi * wi(t)) + N(0, σ2) 

where αi represents institution-specific weights, wi(t) de-

notes local model parameters, and N(0, σ2) is the privacy-pre-

serving noise. 

4.5 Convergence Analysis 

The convergence analysis establishes theoretical guarantees 

for the proposed framework under privacy constraints. The 

analysis considers both model convergence and privacy 

preservation aspects. The convergence properties are charac-

terized by the following theorem: 

Theorem 1: Under the proposed privacy budget allocation 

strategy and aggregation mechanism, the global model con-

verges to a δ-optimal solution with probability 1-β, while 

maintaining ε-differential privacy, if: 

1) The learning rate satisfies: η ≤ min(1/L, ε/√T) 

2) The number of rounds T ≥ O(1/ε2) 

3) The noise scale σ ≤ O(ε/√m) 

where L is the Lipschitz constant, m is the mini-batch size, 

and T is the total number of rounds. 

The convergence rate is analyzed through both theoretical 

bounds and empirical validation. The analysis demonstrates 

that the proposed framework achieves optimal convergence 

while maintaining strong privacy guarantees. The conver-

gence behaviour is characterized by the following inequality: 

E[F(wT) - F*] ≤ O(1/√T + ε) 

where F* represents the optimal objective value and wT is 

the model parameters at round T. 

The theoretical analysis is supported by extensive 

numerical simulations that validate the convergence proper-

ties under various operating conditions. The results demon-

strate the effectiveness of the proposed framework in balanc-

ing privacy protection and model performance in medical fed-

erated learning applications[16].  

5. Experimental Results and Analysis 

5.1 Experimental Setup 

The experiments were conducted on a distributed compu-

ting platform consisting of 20 medical institutions, each 

equipped with NVIDIA V100 GPUs with 32GB memory. The 

implementation was based on PyTorch 1.9.0 with CUDA 11.2. 

Real-world medical datasets from multiple healthcare provid-

ers were utilized for comprehensive evaluation. Table 10 de-

scribes the characteristics of the datasets used in our experi-

ments. 

Table 10: Dataset Characteristics 

Dataset Size Features Classes Type 

Medical 

Images 
50,000 1024x1024 5 CT Scans 

EHR Records 100,000 256 3 
Patient 

Records 

Clinical Notes 75,000 512 4 Text Data 

Laboratory 

Results 
200,000 128 2 

Numerical 

Data 

 

The model architecture consists of a deep neural network 

with 6 convolutional layers followed by 3 fully connected lay-

ers. Training parameters were set as follows: batch size = 64, 

learning rate = 0.001, momentum = 0.9, and weight decay = 

0.0001. The privacy budget ε was initialized at 1.0 with δ = 

1e-5. 

5.2 Performance Evaluation Metrics 

The framework's performance was evaluated using multiple 

metrics covering model accuracy, privacy protection, and sys-

tem efficiency. For classification tasks, we measured accuracy, 

precision, recall, and F1-score. Privacy protection effective-

ness was quantified through privacy loss measurements and 

resistance to various inference attacks[17]. System efficiency 
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was evaluated through communication costs and computa-

tional overhead. 

 

Figure 7: Multi-metric Performance Evaluation Results 

This visualization presents a comprehensive performance 

analysis across multiple dimensions. The figure comprises 

four quadrants: the top-left shows accuracy metrics over train-

ing rounds, the top-right displays privacy budget consumption, 

the bottom-left illustrates communication overhead, and the 

bottom-right presents attack resistance measurements. Each 

metric is represented by different coloured lines with confi-

dence intervals, and critical performance thresholds are 

marked with dashed lines. 

5.3 Comparative Analysis 

The proposed framework was compared against four base-

line approaches: FedAvg with no privacy protection, FedAvg 

with static differential privacy (SDP), local differential pri-

vacy (LDP), and central differential privacy (CDP)[18]. The 

comparison was conducted across multiple dimensions, in-

cluding model performance, privacy protection, and system 

efficiency. 

Table 11: Performance Comparison with Baseline Methods 

Method 
Accu-

racy(%) 

Privacy 

Loss 

Comm. 

Cost 

Training 

Time(h) 

Proposed 92.5 0.15 245MB 4.2 

FedAvg 94.8 1.00 220MB 3.8 

Fe-

dAvg+SDP 
89.3 0.25 250MB 4.5 

LDP 87.6 0.18 260MB 4.8 

CDP 90.1 0.22 255MB 4.6 

The experimental results demonstrate the superior perfor-

mance of our proposed framework in balancing model utility 

and privacy protection. The accuracy degradation compared 

to non-private FedAvg is minimal (2.3%), while achieving 

significantly better privacy guarantees (85% reduction in pri-

vacy loss). 

5.4 Privacy Protection Analysis 

The privacy protection capabilities were evaluated through 

extensive experiments simulating various attack scenarios. 

The analysis included membership inference attacks, model 

inversion attacks, and gradient leakage attacks. The frame-

work's resistance to these attacks was measured under differ-

ent privacy budget settings and attack strengths. 

The privacy analysis demonstrates that our framework 

maintains strong privacy guarantees under various attack sce-

narios. The membership inference attack success rate was re-

duced by 87% compared to baseline methods, while model in-

version attacks showed negligible success rates (<0.1%) under 

all tested conditions. 

Table 12: Attack Resistance Evaluation 

Attack Type 
Success 

Rate(%) 

Privacy 

Budget 

Detection 

Rate(%) 

Membership 

Inference 
3.2 0.5 98.5 

Model Inversion 0.08 0.5 99.2 

Gradient 

Leakage 
2.1 0.5 97.8 

Parameter 

Inference 
1.5 0.5 98.9 

 

The impact of different privacy budget allocation strategies 

was analyzed through ablation studies. The results show that 

our adaptive allocation strategy achieves optimal privacy-util-

ity trade-offs compared to static allocation methods. The pri-

vacy budget consumption patterns demonstrate efficient utili-

zation while maintaining consistent protection levels through-

out the training process. 

The framework's effectiveness in protecting different types 
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of medical data was evaluated through specialized experi-

ments. The results indicate robust protection across various 

data modalities, with particularly strong performance in pro-

tecting sensitive patient information in electronic health rec-

ords and medical imaging data. 

The scalability of privacy protection mechanisms was as-

sessed through experiments with varying numbers of partici-

pating institutions. The results show that the privacy guaran-

tees remain stable as the system scales, with only marginal in-

creases in computational overhead and communication costs. 

The empirical results validate the theoretical privacy guar-

antees established in Section 4.5, demonstrating that the 

framework achieves the desired level of protection while 

maintaining practical utility for medical applications. The 

comprehensive evaluation confirms the framework's effec-

tiveness in enabling privacy-preserving collaborative learning 

in healthcare settings.  
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