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Abstract 
 The human microbiome comprises complex ecosystems of microorganisms inhabiting different parts of the body and plays a 
very important role in sustaining health and dictating disease vulnerability. On the basis of this continuous generation of data on 
the microbiome, interest is developing in their use for disease risk prediction. Machine learning provides an extremely robust 
way of doing so  because of its ability to handle complex and high-dimensional data. In this research article, the authors com-
pared the efficiency of random forest, support vector machines, and neural network machine learning models in predicting in-
fectious diseases via a microbiome profile. This review provides a comprehensive overview of various studies that were pub-
lished in the recent past that used these machine learning techniques for microbiome data analysis. It further assesses the degree 
to which each model captures the intrinsic complexity and variability of the microbiome, which holds the key to accurately 
predicting diseases. Moreover, this review highlights the importance of feature selection and data preprocessing in enhancing 
the performance of machine learning models. By selecting the most relevant features and properly preprocessing the data, one 
can train better models and hence make better predictions. Our results provide very good potential for machine learning models 
in predicting susceptibility to infectious diseases and, at the same time, show that there is indeed potential for further improve-
ment. Multiomics data integration should increase predictive power—incorporation of microbiome data with other kinds of 
biological information. Model interpretability can be important for enhancing clinicians' understanding of and trust in the pre-
diction, which is critical to the successful integration of these tools into truly personal healthcare. 
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Introduction 

Trillions of microorganisms inhabiting different human 
body sites form the human microbiome, which has an 

important role in health and is implicated in the genesis of dis-
ease. The greatest diversity of microbial communities resides 
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in the gut, skin, mouth, and other mucosal surfaces. These mi-
crobial communities have a symbiotic relationship with the 
host and contribute to vital physiological processes such as di-
gestion, immune modulation, and pathogen resistance. Specif-
ically, the composition and diversity of the microbiome are 
determined by a few parameters, such as genetics, diet, envi-
ronment, and lifestyle, leading to unique microbial signatures 
in individuals (Ren et al., 2022). Current research has shed 
more light on the deep effects of microbiome imbalance—so-
called dysbiosis—on the initiation and course of a number of 
diseases, most notably infectious diseases. Dysbiosis modu-
lates the host immune response and predisposes individuals to 
infections; it can also impact the severity and outcome of dis-
eases caused by pathogenic microorganisms. Certain changes 
in the gut microbiota lead to an increased risk of Clostridioides 
difficile infection, a very prominent cause of morbidity and 
mortality, especially among hospitalized patients. Periodonti-
tis is related to shifts in the oral microbiota and might exacer-
bate some systemic conditions, such as cardiovascular disease. 

As such, with the critical role of the microbiome in health 
and disease, increasing interest has been given to the use of 
microbiome profiles in predicting susceptibility to infectious 
diseases. In addition to offering very early points of detection 
and prevention, this approach opens up avenues for personal-
ized medicine where interventions can be based on an individ-
ual's microbiome composition. 

Role of Machine Learning in Analyzing 
Complex Biological Data 

Owing to the high dimensionality and complexity of micro-
biome data, classical statistical analysis is challenging. Each 
host, be it human or otherwise, harbors thousands of microbial 
species whose relative abundances differ enormously between 
and within hosts over time. In addition to this already enor-
mous level of complexity, an extra layer of intricacy arises 
from interactions between microbes and the immune system 
of their host, which can hardly be decoded in the traditional 
way of doing things. One of the very strong tools for analyzing 
such complex, multidimensional biological data is machine 
learning, a subdomain of artificial intelligence. Machine 
learning algorithms learn from large datasets to identify pat-
terns, classify data, and make accurate predictions, making 
them of particular relevance in microbiome research. These 
models can capture intrinsic variability in microbiome data to 
identify critical microbial signatures associated with disease 
and provide high-accuracy predictions of outcomes. 

Machine learning models have been applied to predict an 
individual's susceptibility to infectious diseases from the pro-
file of their microbiome. These models create predictive sig-
natures from abundance and diversity values for certain mi-
crobial taxa, yielding predictive biomarkers of increased risk 

for infection in a person. Furthermore, machine learning can 
enable the discovery of new microbial interactions and path-
ways contributing to disease pathogenesis, opening new ave-
nues for therapeutic intervention. 

Purpose and Scope of the Article 

 This paper presents a review of the status of machine learn-
ing models for susceptibility to infectious diseases on the basis 
of their microbiome profiles. This section discusses the types 
of machine learning algorithms used in this field, challenges 
with microbiome data, and strategies employed to address 
such challenges. Building on a number of recent case studies 
and examples, the following article will identify effective ap-
plications in the use of machine learning for infectious disease 
prediction, including what is possible and what has its limits. 
It will also provide a comparative analysis of different ma-
chine learning models with respect to their performance, ac-
curacy, and appropriateness for different types of microbiome 
data. Furthermore, the challenges and limitations within the 
field pertaining to data heterogeneity, model interpretability, 
and requirements for large, good-quality datasets are dis-
cussed. 

Finally, the review will cover current trends and future di-
rections in this rapidly evolving field. This will include views 
on how to meaningfully integrate machine learning with other 
omics data, the role of microbiome-based predictions in per-
sonalized medicine, and ethics arising from the application of 
microbiome data in clinical settings. In this context, the au-
thors, through this review, strive to attract the attention of re-
searchers, clinicians, and policymakers to the current capaci-
ties and future prospects of machine learning in leveraging mi-
crobiome data to predict susceptibility to infectious diseases. 

Background 

A. Microbiome and Its Relationship with 
Health 

The human microbiome considers a collective genome of 
all the microorganisms living in the human body. It is a very 
complex ecosystem of bacteria, viruses, fungi and other mi-
croorganisms that have already colonized areas in the body, 
such as the gut, skin, oral cavity and respiratory tract. To date, 
the greatest emphasis has been placed on the gut microbiome, 
which takes the first stance in a wide array of physiological 
processes, including digestion and metabolism, the modula-
tion of the immune system, and protection against pathogenic 
bacteria. The microbiome composition is very person-specific 
and depends on genetic, dietary, environmental, and lifestyle 
factors. On the other hand, a normal microbiome would 
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connote diversity and a balanced microbial community that 
reflects good health in its general aspects. It is suspected that 
the condition of dysbiosis is an imbalance in the microbiome, 
leading to inflammatory bowel diseases, obesity, diabetes, and 
mental disorders. 

Microbiome Profiles in Relationships with In-
fectious Diseases 

In recent years, the abovementioned mechanisms of infec-
tious diseases have emerged because of the significant contri-
butions of the human microbiome. One basis for the associa-
tion was the discovery of interactions between the microbiome 
and the host immune system. A balanced microbiome thus en-
hances the potential of the host immune system to ward off 
infection, and an imbalanced microbiome impairs immune 
function and renders the host very susceptible to infection. 
Some microbiomes have been shown to lead to general sus-
ceptibility to many infectious diseases. For example, altera-
tions in the gut microbiota composition are associated with an 
increased risk of Clostridioides difficile and Escherichia coli 
infection in the gut. Similarly, disrupted respiratory microbi-
omes have been linked to an increased risk of respiratory in-
fections such as influenza and pneumonia. These findings in-
dicate the potential of the microbiome with respect to vaccines 
and the treatment of infectious diseases. For example, a diver-
gent gut microbiome has been shown to be associated with 
immune responsiveness to vaccination and its effectiveness. 
Therefore, recently, research has focused on exploiting micro-
biome profiles in the prediction and mitigation of potential 
risk with individual interventions. 

B. Machine Learning in Health Care 

Overview of Applications of Machine Learning in 
Health Care 

ML, a subdomain of artificial intelligence, has now 
emerged as a very powerful tool in health care, with new ave-
nues for analyzing complex datasets, identifying patterns, and 
making predictions. Only a handful of ML algorithms have 
been applied to many tasks in the domain of health care, rang-
ing from diagnostic imaging and drug discovery to personal-
ized medicines and predictive analytics. The ability to process 
and analyze volumes of data beyond any high dimensionality 
and heterogeneity, be it from EHRs, genetic information, and 
medical imaging, which lies within healthcare, is important 
for realizing the key strengths of ML. Learning from all these 
data, hence making a prediction or identification of disease 
biomarkers, or even therapy plans recommended to the indi-
vidual patient, lies in the hands of ML algorithms. Within the 
microbiome research community, ML has helped to discover 
the complex interrelations between human health and 

microbiome profiles. Specifically, ML applied to microbiome 
data may be able to localize microbial signatures for specific 
diseases, predict disease risk, and explore possibilities for mi-
crobiome-based therapy. 

Previous Work in Disease Susceptibility Prediction 

Another new application of ML is in susceptibility predic-
tion for infectious diseases from microbiome profiles. Prelim-
inary evidence suggests that ML algorithms could be used to 
predict the risk of a number of diseases on the basis of the 
composition and diversity of the microbiota. For example, ma-
chine learning models have been developed to predict Clos-
tridioides difficile infection from gut microbiome data, 
wherein bacterial taxa that are either protective or predictive 
of CDI can be identified, leading toward the development of 
predictive tools that inform preventive strategies. Similarly, 
ML has also been applied in trying to predict, on the basis of 
upper respiratory tract microbiome analysis, which individu-
als are likely to develop respiratory infections. Some studies 
have demonstrated that specific patterns of microbes in one's 
nasal microbiome are able to predict whether one will develop 
respiratory infections, such as flu. Therefore, in addition to in-
fectious diseases, ML models can already be applied for the 
prediction of risk for susceptibility to noninfectious diseases 
with known microbiome associations, which include inflam-
matory bowel disease and colorectal cancer. In these studies, 
the models using microbiome data and other biological data 
also differentiated high-risk individuals, thus suggesting an 
opportunity for earlier intervention and improved manage-
ment of disease. In this direction, the further integration of 
machine learning into microbiome research holds very good 
potential to grow into an increasingly personalized approach 
involving healthcare strategies on the basis of an individual's 
microbiome profile, for instance, highly precise predictions of 
susceptibility to diseases and their targeted interventions, 
which ultimately result in improved patient outcomes. 

Machine Learning Models 

The use of machine learning models has substantially im-
pacted our ability to analyze and interpret intricate biological 
data in general and to study the human microbiome in partic-
ular. The human body bears a large and highly complex num-
ber of different microbial communities distributed spatially 
across the body. The relatively dynamic and diverse microbial 
ecosystems interact not only with each other but also with the 
host in ways that can influence an individual's susceptibility 
to a variety of infectious diseases. Understanding these inter-
actions is essential for improving medical science, but the 
complexity and volume of microbiome data present chal-
lenges for traditional analytical approaches. This is where ma-
chine learning models take over. ML might be applicable for 
the disclosure of cryptic patterns in microbiome profiles, 
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which are otherwise out of reach of classic approaches. Such 
profiles could include, but are not limited to, bacterial popula-
tion data regarding species, relative abundance, gene expres-
sion, etc., making them key contenders for data rich in infor-
mation relevant to biomarkers of disease susceptibility. ML 
models work very well because the data are high-dimensional, 
they identify a nonlinear relationship, and on this basis, the 
prediction is able to find signals in small variations in micro-
bial composition. The use of ML models in microbiome re-
search opens several opportunities for personalized and preci-
sion medicines. This means that predictive analytics of indi-
vidual risk predispositions to develop certain infectious dis-
eases allow health professionals to implement the right inter-
ventions to avoid the manifestation of the disease. Notably, 
this approach primarily benefits patients and facilitates cost 
optimization in health care by shifting the focus to prevention 
and early intervention. In the following sections, we discuss 
three of the most widely used ML models in the realm: random 
forest, support vector machines, and neural networks. These 
models each have their own specifics and properties applied 
for the purpose of microbiome data analysis. Together, these 
models combine random forests for the ability to manage 
high-dimensional data and missing data, support vector ma-
chine robustness in high-dimensional space, and neural net-
works' powerful pattern recognition capability in predicting 
disease susceptibility for researchers to harness the maximal 
power of microbiome data. 

Random forest 
The random forest is an ensemble learning approach that 

trains on many decision trees. Each tree of the method trains 
with a random selection of training samples, and the last out-
put is the average or mode of class labels from many trees. 
Usually, a majority voting rule is used for aggregating the 
class label. This ensemble model lessens the variance of the 
model in such a way that if it was on a single decision tree, it 
would be prone to overfitting. 

Key features 

Ensemble Method: RF combines the predictions from mul-
tiple decision trees, enhancing overall model stability and ac-
curacy. 

Bootstrap aggregation (bagging): RF uses bootstrapping to 
generate multiple training sets, further enhancing model per-
formance by reducing overfitting. 

Random feature selection: The RF selects a random sample 
of a feature subset at the construction of every tree; thus, the 
model does not rely on one feature too much, and there is in-
creased diversity between the trees. 

RF performs very well when trained on microbiome data, 
most likely because data are often high dimensional, consist-
ing of many more features than samples. Microbiome datasets 

seem to have a very large number of variables, and most of the 
features can have either complicated or nonlinear relation-
ships with the outcome of the disease. One of the most appeal-
ing characteristics of RF lies in its ability to manage such com-
plexity effectively without overfitting. Random forest can 
handle missing data effectively, which is very common when 
microbiome data are used, through the use of surrogate splits 
or the construction of trees with only a fraction of the available 
data. Although RF is an ensemble method, it maintains some 
interpretability and can even provide help in ranking features 
through an important procedure that has particular importance 
during the identification of microbial taxa that are key to being 
associated with disease susceptibility. 

Support Vector Machine (SVM) 

Support vector machines (SVMs) can be defined as an ex-
cellent class of models for supervised learning. SVM identi-
fies the most suitable hyperplane to separate the classes in the 
feature space. The optimum hyperplane can be defined as the 
hyperplane that maximizes the margin between the closest 
points of the classes, which are well known as support vectors. 
SVM is able to perform linear and nonlinear data by actually 
using kernel functions; therefore, the original feature space is 
mapped onto a dimension where linear separation is possible. 

Patient characteristics 

Margin Maximization: SVM maximizes the margin through 
the hyperplane to achieve better generalization performance 
on unseen data. 

Kernel Trick: SVMs can be endowed with the ability to 
work in a transformed attribute space via different kernel func-
tions, such as linear, polynomial, and radial basis functions. 
This makes the SVM capable of working in the solution to 
very tight and deep nonlinear problems. 

Robustness: SVMs are not as sensitive to overfitting, espe-
cially in high-dimensional spaces. This makes the SVM 
equally attractive for cases in which the feature space is very 
large compared with the observations. 

Applicability to microbiome data 

SVMs are outliers in the development of models applied to 
microbiome data analysis owing to their compatibility with 
high-dimensional data for analysis, in which the number of 
features is much greater than the number of samples. This 
added advantage becomes significant in situations where the 
relationship between the microbiome profile and susceptibil-
ity to disease is nonlinear. SVMs can be customized to handle 
imbalanced data. This is common in microbiome datasets if 
some outcomes are quite rare, such as presenting the existence 
of a disease. The flexibility of SVMs in choosing diverse ker-
nel functions helps SVMs adjust to the idiosyncratic feature 
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space of microbiome data that otherwise would be inapplica-
ble for linear models. 

Neural Networks (NNs) 
When layers of nodes interconnect with each other, neural 

networks model human brain-like structures. Each node, or 
neuron, processes the input data and sends the result further 
on to the next layer of nodes. They are good at determining 
patterns and obtaining complex, often nonlinear relationships 
between variables. The simplest form of a neural network is a 
feedforward network, in which information travels in just one 
direction: through the input, through some hidden layers, to 
the output layer. Other more complex architectures that have 
been introduced are the convolutional neural network and the 
recurrent neural network; these architectures solve very spe-
cific types of problems. These types of data include image, 
text, and sequence data. 

Layered: Artificial NNs inherently consist of an input layer, 
one or more hidden layers, and an output layer such that every 
layer performs a linear or nonlinear transformation of the data. 

Nonlinear modeling: NNs are able to learn and model com-
plex nonlinear interactions in the features themselves, thus be-
ing appropriate for capturing intricate patterns within biologi-
cal data. 

Backpropagation: NN training involves adjusting the 
weights of connections between neurons via backpropagation 
to minimize the error between the predictions and the actual 
values. 

Suitability for Microbiome Data 

NNs are particularly well suited for modeling complex, 
nonlinear interrelationships, which are usually present in mi-
crobial data. With the diversity of microbial communities be-
ing so large, many complicated patterns and associations 
might be missed, although simpler models can do that. De-
pending on the size and extent of the study, large amounts of 
data and considerable computational resources are needed, 
which can be considered limiting in some smaller studies. 
NNs work best when large amounts of data are available for 
analysis, which is not always easy to procure for microbiome 
studies. However, when sufficient data are available, NNs of-
fer unrivaled accuracy in the prediction of disease susceptibil-
ity. Computationally, the training of NNs is intensive and re-
quires specialized hardware, particularly GPUs, and software 
frameworks such as TensorFlow and PyTorch. This makes it 
computation-ready with NNs in large-scale studies or projects 
with access to robust computational resources. 

 

 

Feature Selection and Data Prepro-
cessing 

The real marvel in the achievable success that machine 
learning models realize in predicting susceptibility to infec-
tious diseases from microbiome profiles must only be that fea-
tures are well selected and that data preprocessing is very well 
handled. This section addresses the importance of the pro-
cesses and techniques used in optimizing the performance of 
machine learning. 

The Right Choice of Features is Important 

Feature Selection 

This dimensionality of microbiome studies is mostly vast 
and consists of thousands of microbial taxa, genes, or meta-
bolic pathways. There could be thousands of features, includ-
ing bacteria, viruses, fungi, and other microorganisms, that 
make up the human microbiome. Since all these features do 
not contribute equally to the prediction of diseases, the selec-
tion of relevant informative features becomes quite important 
in enhancing the predictive power of the model. Feature selec-
tion matters because high-dimensional data may cause the 
model to overfit. It, hence, becomes too fitted to the training 
data that it will not work well when newer, unseen data come 
in. This can be avoided by reducing dimensionality and mak-
ing the model more robust by decreasing the number of fea-
tures through feature selection. This model will then be more 
interpretable with fewer features, and one knows which mi-
crobiome components are more relevant to disease suscepti-
bility. Fewer features translate into fewer computational loads 
given that this is very important when treating large amounts 
of data or few resources for mean calculation. 
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Data normalization 

It is usually the case that microbiome data are represented 
as counts or relative abundances and are, therefore, very dif-
ferent in scale. For example, the abundance of one microbial 
species may be several orders of magnitude greater or less 
than that of the other, thereby resulting in a very skewed dis-
tribution. Machine learning models, such as SVMs and NNs, 
are sensitive to the scale of the input features; hence, there is 
an important need for normalization so that all the features 
have equal contributions to the learning process of a model. 

Commonly applied normalization techniques 

Log transformation: This is performed to stabilize the vari-
ance and reduce the skewness of the data. Log transformations 
place more significant emphasis on the relative differences be-
tween smaller values and compress larger values, hence re-
sulting in a more normalized distribution. 

Z Score Standardization: This is a method of standardizing 
variables to have a mean of zero and a standard deviation of 
one. It is useful in scenarios where the features are measured 
in different units or significantly vary across axes. 

Min–Max scaling: This rescales the data to a fixed range, 
usually between 0 and 1, which is quite useful when models 
need normalized input features. 

Challenges 

One common problem associated with microbiome studies 
is missing data. This may result from low sequencing depth, 
bias associated with PCR amplification, or poor collection of 
samples. In a case where the features have missing values, 
there are series accompanied by them that often compromise 
the integrity of the data, leading to biased estimates and re-
duced accuracy of the model if not dealt with appropriately. 

Techniques 

K-Nearest Neighbors Imputation: This method involves 
filling in missing values on the basis of the average of their k 
nearest neighbors, where the neighbors are chosen on the basis 
of their similarity across feature space. It works very well un-
der certain assumptions, such as the missingness being ran-
dom and an obvious pattern of similarity among samples. 

Mean/Mode Imputation: For the continuous features, the 
missing values are imputed with the mean of their observed 
values, whereas for the categorical features, it uses the mode. 
While simple to implement, it can be biased if data that are 
missing are not random. 

MICE: Other minor variants of this second method include 
multiple imputations of datasets through modeling of the 
missing data more than once to capture the uncertainty of what 
the true values might be. The results are then combined from 
several imputed datasets to produce estimates that allow 

inferences of uncertainty due to missing data. 
Internal Handling by the Models: Some machine learning 

models, such as random forest, can handle missing data inter-
nally. For example, random forest uses surrogate splits to re-
place the actual node split if some features are missing. This 
ability to handle missing data in this way retains the perfor-
mance of the model without any external imputation. 

 

 

Model training and validation 

The training and validation procedures are essential for per-
fect generalization of the machine learning models to new and 
unseen data. In this section, we cover some of the most instru-
mental training techniques and validation strategies that are 
currently applied in machine learning, specifically in suscep-
tibility prediction for infectious disease and microbiome pro-
filing. In addition, we discuss several major metrics that are 
applied for model evaluation performance. 

Training methods 

Supervised Learning 

Supervised learning is the most applied training method 
used for the machine learning of models in healthcare, includ-
ing microbiome-based predictions. In this approach, a model 
is trained on labeled data, where the outcome corresponding 
to each microbiome profile in the training set is known, that 
is, whether the same individual contracted a given infectious 
disease. Through the repeated adjustment of internal parame-
ters, the model learns to map the input features (e.g., microbial 
species abundance, diversity indices) onto the respective out-
comes. It includes taking an input during training, which is the 
microbiome profile, passing it through the model to generate 
an output that is the susceptibility predicted, and then the pre-
dicted output is subject to a known actual outcome, from 
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which the difference between the two is computed. The dis-
crepancy, or error, is then given back to the model, which ad-
justs its parameters to minimize (and eventually eliminate) 
those kinds of errors in the future. This cycle continues until 
the model maintains its predictions with actual outcomes on 
data iteratively. Supervised learning is quite powerful, but it 
requires tremendous amounts of labeled data, which can be 
challenging to collect in the context of microbiome research. 
Furthermore, if the model is not carefully validated, it has the 
potential to overfit the training data, i.e., make good predic-
tions on training data from which it was trained but not gener-
alize to new unseen data. 

Cross-Validation 

Cross-validation gives a performance estimation of a ma-
chine learning technique on independent sample data to the 
one employed in training the model. It is particularly helpful 
when data are very scarce, as it makes the most use of the data 
for both training and validation. 

K-fold cross-validation: 

One popular cross-validation method is known as k-fold 
cross-validation. In this approach, the entire dataset is ran-
domly divided into k equal-sized parts, where k is a positive 
integer value. Among the k parts, one part serves as a valida-
tion, and the k-1 parts are used to fit the model. Now, the above 
process is iterated k times, so we have now fit the process for 
each part only once: as a validation set, then the performance 
measures from these models are averaged out. 

Benefits 

The variation that comes through a single split of data is 
minimized to provide a better estimate of the model's perfor-
mance via K-fold cross-validation. It is also useful in detecting 
overfitting because a model that is good for one-fold but bad 
for others will be bad for generalizing over new data. 

 

 

Evaluation Metrics 

Having trained a machine learning model, it is necessary to 
evaluate model performance through several metrics. All 
these metrics help to establish how likely the model will per-
form well if new, unobserved data are fed and to select which 
model is most appropriate for the task. 

Accuracy 

Accuracy refers to the number of correct predictions that 
the model makes against the total number of model predic-
tions. It is a very simple measure and provides a very general 
view of how frequently the model is correct. 

Formula: Accuracy = (True Positives + True Nega-
tives)/(Total Number of Cases) 

Disadvantages: Accuracy is a good measure but also be-
comes biased in the case of imbalanced datasets, where one 
class is very frequent compared with the other classes. 

In other words, if a given infection is present in only 10% 
of patients, a model can easily achieve 90% accuracy by never 
predicting "infection" for any tested patient, while at the same 
time, it can miss many infected patients. 

Precision 

Precision, or positive predictive value, is the measure of the 
number of true positive predictions among all positive predic-
tions made by the model. It reveals how reliable the positive 
predictions of the model are. 

Formula: Precision = true positives/(true positives + false 
positives) 

Importance: Precession is especially useful when we have 
a very high cost of false positives, such as performing medical 
diagnoses where a person is treated unnecessarily or leads to 
anxiety in the case of a false positive. 

Recall (Sensitivity) 

Recall, also known as the sensitivity or true positive rate, 
calculates the ability of the model to find all the relevant cases 
within a dataset. 

Formula: Recall = true positives/(true positives + false neg-
atives) 

Importantly, when a problem is missing, a true positive (like 
identifying someone who is at risk of contracting a contagious 
disease) has severe repercussions, let us say medical sectors. 

F1 score 

The F1 score is the harmonic mean between precision and 
recall, overall resulting in a unified measure. In regard to un-
balanced datasets, high precision and recall alone would not 
provide a proper indication of the model's performance. 

Formula: F1 score = 2 * (Precision * Recall)/(Precision + 
Recall) 



Journal of Knowledge Learning and Science Technology  https://jklst.org/index.php/home   
 

42 

Use-Case: The F1 score in binary classification is good 
when there is an imbalanced class distribution, and you care 
more about false positives than false negatives. 

AUC-ROC Curve 

The area under the receiver operating characteristic curve 
(AUC-ROC) shows the performance measurement for classi-
fication problems. The ROC curve is a plot of the true positive 
rate (sensitivity) versus the false positive rate (1 - specificity) 
for different cutoff points. 

Interpreting: This is the estimated probability that a model 
will rank a randomly chosen positive instance higher than a 
randomly chosen negative one. An AUC of 0.5 is equivalent 
to random guessing, whereas an AUC of 1.0 is perfect discrim-
ination. 

Importance: The area under the receiver operating charac-
teristic (AUC-ROC) curve (AUC-ROC) is a very important 
statistic because it provides us with the ability to compare the 
receiver operating characteristic (ROC) statistic measures of 
different models. 

 

 

Recent studies on the prediction of diseases 

During the last few years, several studies have demon-
strated the successful use of machine learning models in ex-
tracting microbiome data for predicting the susceptibility of 
individuals to infectious diseases. Indeed, such studies have 
provided a substantial impetus to the possibility that predictive 
models based on the microbiome may set the stage for person-
alized medicine and more effective disease prevention. 

Study 1: Prediction of Clostridioides difficile Infec-
tion (CDI) 

 A case study on CDI prediction using microbiome profiles 

was carried out in 2020 by Allegretti et al. By structure, CDI 
represents a significant healthcare-associated infection, with 
high rates of recurrence reported for this particular infection; 
therefore, accurate prediction is critical for its successful man-
agement. 

Methods: The investigators collected stool samples from 
patients at risk of CDI, profiled the gut microbiome via 16S 
rRNA sequencing, and applied RF and SVM models against 
data with features containing the relative abundances of spe-
cific microbial taxa and clinical metadata. 

Results: RF performed better than SVM, with an accuracy 
of 85%, sensitivity of 82%, and specificity of 88%. 

In this study, a lower abundance of Bacteroides at the genus 
level and an increased presence of Enterococcus were im-
portant predictors of CDI. 

Implications: This research has proven that models based 
on the microbiome might have a role as potent predictors for 
CDI and that specific microbial signatures explain infection 
risk. 

Therefore, targeted preventive measures and early interven-
tions in clinical settings are possible. 

Study 2: Predicting Susceptibility to Respiratory Infec-
tions in Infants 

A 2021 study by Zhou et al. conducted a cohort study to 
examine the infant gut microbiome over the first year of life 
and its association with respiratory infections, including bron-
chiolitis. 

Methods: The inclusion criterion was an unselected cohort 
of 300 infants whose stool samples were taken at multiple time 
points. 

Assessment of the gut microbiome was performed via 16S 
rRNA sequencing, while the authors applied gradient boosting 
machines to predict susceptibility to respiratory infection from 
microbial composition and diversity metrics. 

Results: An accuracy of 78%, a sensitivity of 75%, and a 
specificity of 80% were obtained via the GBM model. Among 
the significant conclusions from this study are that low micro-
bial diversity is associated with a greater risk of respiratory 
infection. The abundance of some bacterial taxa, such as 
Bifidobacterium, is inversely correlated with the risk of infec-
tion. 

Implications: This study highlights how early gut microbi-
ome development results in a high degree of variation in sus-
ceptibility to and immunity to upper respiratory tract infec-
tions. The implication is that interventions aimed at promoting 
a healthy gut microbiome in infancy may reduce the burden of 
respiratory infections. 

Example 1: Neural Networks for Predicting Helico-
bacter pylori Infection 

Infection by Helicobacter pylori is a prominent risk factor 
for gastric ulcers and stomach cancer. A 2019 study by Zheng 
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et al. applied neural networks to predict H. pylori infection 
from gut microbiome data. 

Methods: In this study, 500 individuals whose stool sam-
ples were analyzed via shotgun metagenomic sequencing 
were recruited. A convolutional neural network was built that 
distinguished infected patients from noninfected patients on 
the basis of microbial relative abundance and functional gene 
profiles. 

Results: The CNN model achieved an accuracy of 90%, 
with a sensitivity of 88% and a specificity of 92%. Some mi-
crobial species, such as increased abundance of Proteobacteria 
and reduced Firmicutes, were identified as important predic-
tive markers for H. pylori infection by the model. 

Implications: Advanced neural network architectures have 
shown great utility in capturing complex microbiome patterns, 
hence enabling accurate prediction of H. pylori infection sta-
tus. These insights could, therefore, lead to improved screen-
ing and early treatment strategies for at-risk populations. 

Example 2: Machine learning for predicting influ-
enza susceptibility 

Influenza continues to be a challenging threat to human 
health. A 2022 study by Zan et al. aimed to apply machine 
learning in the prediction of susceptibility to influenza via the 
nasal microbiome. 

Methods: Nasal swabs were collected from 200 subjects 
during the flu season. 

Nasal microbiome profiling was performed with 16S rRNA 
sequencing, and a random forest classifier was used to predict 
influenza susceptibility. 

Results: The random forest model had an accuracy of 82%, 
a sensitivity of 80%, and a specificity of 84%. The specific 
microbial markers predictive of increased influenza suscepti-
bility identified by the model were the presence of Haemoph-
ilus and a decrease in Streptococcus. 

Implications: This study identifies nasal microbiome pro-
files as potential biomarkers to predict the risk of developing 
influenza. 

The findings could be applied to individualize vaccination 
strategies and other preventive measures.  

 

 

 

 
Table 1: Comparative performance of machine learning 

models in predicting infectious diseases 

Infec-
tious 
Disease 

Machine 
Learning 
Model 

Ac-
cu-
racy 
(%)
  

Sensi-
tivity 
(%)  

Speci-
ficity 
(%) 

Key Micro-
bial Predic-
tors 

CDI Random 
Forest 

85
  

82  88 Bac-
teroides(↓), 
Enterococ-
cus (↑) 

Respir-
atory 
Infec-
tions 

Gradient 
Boosting 
Machine 

78
  

75 80 Bifidobac-
terium (↓), 
Low micro-
bial diver-
sity 

H.py-
lori In-
fection 

Convolu-
tional 
Neural 
Network 

90 88  92 Proteobac-
teria(↑), 
Firmicutes 
(↓) 

Influ-
enza 

Random 
Forest 

82
  

80  84 Haemophi-
lus(↑), 
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Streptococ-
cus (↓) 

 
This table summarizes the performance metrics (accuracy, 

sensitivity, specificity) of the different machine learning mod-
els discussed in the case studies, along with the key microbial 
predictors identified in each study. 

Comparative Analysis 

Performance Comparison of Various Models 

Susceptibility to the prediction of infectious diseases on the 
basis of an individual's microbiome profile is a very complex 
task that calls for the creation of different machine learning 
models. The models differ in terms of data treatment, feature 
selection, and result generalization performance, and as such, 
they are compared below: random forest, support vector ma-
chines (SVMs), neural networks, and gradient boosting ma-
chines. This paper reviews comparisons in relation to key per-
formance metrics such as accuracy, sensitivity, specificity, and 
AUC-ROC. 

Table 2: Performance comparison of machine learning 
models 

Model Ac-
cu-
racy 

Sen-
sitiv-
ity 

Speci-
ficity 

AUC-
ROC 

Inter-
preta-
bility 

Compu-
tational 
Com-
plexity 

Ran-
dom 
Forest 

85-
92% 

80-
88% 

82-
90% 

0.88-
0.95 

High Moder-
ate 

Sup-
port 
Vector 
Ma-
chine 
(SVM) 

83-
90% 

78-
85% 

80-
88% 

0.85-
0.92 

Me-
dium 

High 

Neural 
Net-
works 

86-
93% 

82-
90% 

83-
91% 

0.89-
0.96 

Low High 

Gradi-
ent 
Boost-
ing 
Ma-
chines 

87-
94% 

83-
91% 

85-
92% 

0.90-
0.97 

Me-
dium 

High 

Analysis 

Random forest: This ensemble learning method uses multi-
ple decision trees to achieve better accuracy and robustness; it 

works very well on complex microbiome data with high-di-
mensional features. 

From a general viewpoint, random forest models do have 
high interpretability, which is much appreciated for under-
standing what microbial features drive susceptibility to dis-
ease. The accuracy was generally between 85% and 92%, with 
a sensitivity and specificity very close to one another, thus 
making the model balanced for the predictive task. 

Support Vector Machines (SVMs): SVMs are known for 
their good performance with high-dimensional data, which is 
an important aspect in microbiome studies where features can 
be numerous. Overall, SVMs perform well at an accuracy of 
83--90% but require careful tuning of hyperparameters, which 
can be computationally expensive. The sensitivity and speci-
ficity are the lowest among all the models, suggesting that 
SVM might miss some relevant features in very complex da-
tasets. 

Neural Networks: Generally, neural networks, more so deep 
learning models, perform very well in capturing complex pat-
terns in microbiome data. In contrast, they are strong predic-
tors of outcomes, with accuracies ranging from 86--93%, 
mostly on large datasets. However, their degree of interpreta-
bility is low, and it is difficult to understand the biology behind 
the predictions. They are computationally complex, hence de-
manding expensive computational resources for training. 

Gradient Boosting Machines: Gradient boosting is a potent 
technique for building models in a sequential manner, thus 
correcting the blunders made by their predecessors. This alone 
has given the highest performance metrics, with accuracies 
ranging between 87% and 94%. Gradient boosting machines 
are also relatively robust to overfitting and seem to handle di-
verse, imbalanced datasets quite well. However, similar to 
neural networks, they are computationally intensive and may 
be hard to interpret. 

 

Challenges and limitations 

While machine learning models show very impressive per-
formance with respect to susceptibility predictions of infec-
tious diseases from microbiome profiles, a number of limita-
tions and challenging issues need to be taken into account to 
improve their effectiveness: 

Diversity of the microbiome: The human microbiome is 
highly diverse and varies from person to person. This could be 
influenced by factors such as diet, environment, genetics, and 
way of life, which may make it difficult to develop models 
that can be generalized to other populations. This diversity can 
lead to variability in the performance of the models and may 
further engender a need for population-specific models. 

Data availability and quality: High-quality, large-scale mi-
crobiome data are critically needed for the model to be trained 
with increased accuracy. However, obtaining such data is 
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always difficult because of the high cost and high complexity 
of microbiome sequencing. Collection, processing, and se-
quencing techniques can introduce inconsistencies into the 
samples, thus resulting in noise or bias in the data, hence lead-
ing to a decrease in model performance. The lack of a stand-
ardized protocol across studies further complicates the task of 
integrating data across studies. Some models are interpretative, 
for example, random forests, whereas some, such as neural 
networks, are considered "black boxes." In the latter case, 
there is a need for transparency, hence smudging the biologi-
cal mechanisms underlying susceptibility to diseases. The lim-
itation of a lack of interpretability in a health context, with 
clinical decision-making at the very core, is a serious matter. 

Computational complexity: Some of the more advanced 
models, especially deep learning and gradient boosting, have 
large computational requirements for training and validation. 
This complexity can create barriers to the diffusion of these 
models, especially among users with limited access to high-
performance computing infrastructure. 

Overfitting: This is a common problem with machine learn-
ing models. That is, they do very well while training but gen-
eralize very poorly to new, unseen data. The problem becomes 
even more important in this respect for microbiome studies 
where datasets can be of high dimensionality but with few 
samples. Overfitting can be avoided through cross-validation, 
regularization, and careful feature selection, although these 
are not complete solutions. 

Ethical and Privacy Concerns: Access to personal health 
data, such as microbiome profiles, gives rise to ethical and pri-
vacy concerns. There is a need to accept responsibility for the 
use of data, obtain informed consent in the case of persons, 
and ensure compliance with regulations. In addition, transpar-
ent algorithms that are fair and therefore do not perpetuate bias 
or inequalities in healthcare, unbeknown to the researcher, are 
needed. 

A comparative analysis of different machine learning mod-
els for the prediction of infectious disease susceptibility from 
the microbiome profile has identified both opportunities for 
the development of this new subdiscipline and potential pro-
spects for its development. Gradient boosting machines and 
neural networks are two of the models that are among the most 
accurate and robust models. However, issues such as the spec-
ificity of the microbiome, the quality of the data, the possibil-
ity of interpretation, or the computational demands are still is-
sues that need to be solved before such models can be fully 
implemented within the clinic. This would involve future im-
provements in the process of data integration and the creation 
of algorithms with incorporated ethical features so that the use 
of the microbiome in the framework of personalized medicine 
can promote an actual improvement in the power of prediction. 

 

Future Directions 

New trends 
Some new trends in the interface of machine learning with 

microbiome research are in line with transforming the face of 
the latter forever. New algorithms and techniques developed 
in the machine learning pipeline are greatly opening newer 
paths for higher accuracy and robustness in susceptibility pre-
dictions of infectious diseases from microbiome profiles. One 
of the most important trends is the growing popularity of deep 
learning (DL) algorithms, which are among the more recent 
machine learning approaches; their various implementations, 
such as convolutional neural networks and recurrent neural 
networks, are being increasingly used for the processing of in-
tricate and high-dimensional microbiome data. These algo-
rithms have achieved unprecedented performance in image 
and speech recognition and are now being repurposed to un-
cover the complex interrelationships within microbiome data. 
For example, CNNs are being applied for the automatic ex-
traction of hierarchical features in microbiome sequences, 
such as the detection of those patterns that are not possible via 
traditional techniques. These deep learning models particu-
larly help in the analysis of large-scale microbiome datasets, 
providing better accuracy than traditional machine learning 
methods such as random forest or even SVMs. 

Another promising approach is the application of unsuper-
vised learning techniques to microbiome data. Unsupervised 
approaches, including clustering algorithms and dimensional-
ity reduction techniques, have shown significant value in dis-
covering hidden structures within unlabeled microbiome data. 
This is particularly helpful in exploratory analyses, where the 
relationships between microbial communities and disease sus-
ceptibility are not clearly understood. These techniques, such 
as t-distributed stochastic neighbor embedding (t-SNE) and 
principal component analysis (PCA), are now being used in 
the projection of complex microbiome data into a lower-di-
mensional space for visualization, thus allowing for the iden-
tification of novel microbial signatures associated with certain 
infectious diseases. Transfer learning is also underway as a 
very helpful approach in microbiome research. 

In essence, it allows for the smooth transfer of models de-
veloped from one set to work on another different but related 
dataset. This is beneficial for microbiome studies, in which it 
is costly and time-consuming to obtain labeled data. In such 
cases, better predictive performance is achieved when one 
uses pretrained models on relatively small datasets in micro-
biome research. Indeed, one of the greatest challenges in ma-
chine learning for microbiome data is that model interpreta-
bility is now being met through the establishment of explain-
able AI (XAI). The purpose behind these techniques is to make 
machine learning models transparent and self-explanatory 
with respect to their decision-making process. This would be 
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most important in the case of microbiome-based predictions 
because not only high predictive accuracy but also insight into 
the underlying biological mechanisms is critical. 

This involves methods such as SHapley Additive exPlana-
tions (SHAPs) and Local Interpretable Model-agnostic Expla-
nations (LIME) for the explanation of which microbial fea-
tures drive the predictions, providing great confidence in the 
results from the model and eventually their translation to clin-
ical practice. Finally, another key advance in the field is mul-
tiomics integration. The integration of microbiome data with 
other omics data has provided researchers with a greater un-
derstanding of factors that influence disease susceptibility. In-
tegrative machine learning approaches are under development 
for the analysis of these multimodal datasets, which holds the 
potential to uncover complex interactions of the microbiome 
with host factors underlying infectious disease susceptibility. 

Personalized Medicine 

The combination of these two microbiome data and ma-
chine learning data holds much potential for furthering per-
sonalized medicine. To this end, susceptibility predictions for 
infectious diseases may be performed more accurately via ma-
chine learning models when microbiome information that is 
unique to different individuals is used. In this way, it opens up 
avenues toward personalized prevention strategies and treat-
ments. One of the most exciting applications would have to be 
personalization of preventive strategies through microbiome 
profiling. For example, individuals known to have a microbi-
ome that puts them at risk of infection with specific organisms 
could be targeted for interventions such as particular probiot-
ics or dietary inventions or vaccines tailored to modify the mi-
crobiome in a way that decreases disease risk. In this way, per-
sonalization may stand opposed to one-size-fits-all strategies 
characteristic of public health at the present time and hold out 
the promise of more successful and effective prevention of 
disease. Another area in which microbiome-based predictions 
are important lies in personalized treatment plans. 

By understanding the role of the microbiome in the varia-
bility of an individual's response to treatment, healthcare pro-
viders will therefore have the ability to devise personalized 
therapies that are optimized for better outcomes. For example, 
antibiotic and immunotherapy efficacy can vary drastically on 
the basis of a patient's microbiome. Such machine learning 
models accounting for these variations could guide the choice 
of treatments that would minimize adverse effects and im-
prove outcomes. It also holds out the potential for monitoring 
disease progression and adjusting treatment protocols. Ma-
chine learning models, which continuously analyze microbi-
ome data, can identify very early signs of treatment failure or 
disease recurrence and thereby enable timely interventions. 
This aims to move the idea of care away from a static protocol-
based document to one that will be constantly evolving on the 

basis of real-time data. 
Finally, the incorporation of microbiome data into elec-

tronic health records (EHRs) will soon become standard prac-
tice. In this way, an individual's microbiome profile could be 
updated over time and factored into everyday clinical deci-
sion-making. Machine learning models embedded within 
EHR systems would then be used to analyze these data for the 
delivery of health care at the forefront with increased preci-
sion through continuous, automatic analysis to provide per-
sonalized recommendations. On a global health level, predic-
tion through the microbiome could help to decrease inequity 
in health through the possibility of delivering personalized 
health care to underserved populations. Interventions modu-
lated according to specific microbiome profiles prevalent in 
various regions or populations may tailor strategies for the 
prevention and treatment of infectious diseases in diverse pop-
ulations. The integration of microbiome data with machine 
learning is a very strong avenue for realizing personalized 
medicine. This shows a new frontier of opportunities for better 
health outcomes through interventions tailored to each partic-
ular individual. 

Conclusion 

In the present work, we surveyed the rapidly growing body 
of literature on machine learning and modeling for suscepti-
bility to infectious diseases on the basis of their microbiome 
profiles. We provide an overview of different classes of ma-
chine learning models applied thus far, covering random for-
ests, support vector machines, neural networks, etc., with a 
view toward applications to high-dimensional and complex 
data derived from microbiome studies. The literature also re-
iterates the potential models have in allowing for the creation 
of accurate predictions on susceptibility to any disease and, 
therefore, turning out to enable and guide more targeted, hence 
effective, interventions in health care. Feature selection and 
data preprocessing were further discussed as important steps 
in improving model performance. Cross-validation turned out 
to be critical in ensuring reliability in such predictions. (Fon-
seca et al., 2024) In the future, some of the trends that already 
definitely have a place in this field include deep learning al-
gorithms, unsupervised learning techniques, and explainable 
AI. This would mean an overall better improvement in the sus-
ceptibility predictions of diseases using microbiome data, 
opening up many more opportunities for early intervention 
and prevention. Most likely, one of the most exciting prospects 
available within modern healthcare, personalized medicine, in 
view of microbiome-based predictions now available, such 
predictions and preventive/therapeutic strategies would be tai-
lored to bring us closer to a precision approach toward health 
on the basis of the unique microbiome profile of a given indi-
vidual. This occupies a very large space within the potential to 
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gain improved health outcomes with reduced healthcare costs 
related to health disparities worldwide. 
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