

ISSN: 2959-6386 (Online), Vol. 2, Issue 2

Journal of Knowledge Learning and Science Technology

journal homepage: https://jklst.org/index.php/home

Role of GenAI in Automated Code Generation within DevOps Practices:
Explore how Generative AI

Prachi Tembhekar1, Munivel Devan2, Jawaharbabu Jeyaraman3

1Amazon Web Services, USA

 2Fidelity Investments, USA
 3TransUnion, USA

Abstract

Artificial Intelligence (AI) is a pivotal domain within computer science, profoundly influencing the software
development lifecycle, particularly during the implementation phase. Here, developers grapple with the task of
translating software requirements and designs into executable code. Automated Code Generation (ACG) leveraging
AI emerges as a promising solution in this context. The automation of code generation processes is gaining traction
as a means to tackle diverse software development challenges while boosting productivity. This paper presents a
thorough review and discourse on both traditional and AI-driven techniques employed in ACG, highlighting their
respective challenges and constraints. Through an examination of pertinent literature, we identify various AI
methodologies and algorithms utilized in ACG, extracting evaluation metrics such as Accuracy, Efficiency,
Scalability, Correctness, Generalization, among others. These metrics serve as the basis for a comparative analysis
of AI-driven ACG methods, delving into their applications, strengths, weaknesses, performance metrics, and future
prospects.

Keywords: Artificial intelligence, automated code generation, deep learning, evolutionary algorithms, machine
learning, natural language processing.

Article Information:
Article history: Received:01/10/2023 Accepted:10/10/2023 Online:30/10/2023 Published: 30/10/2023
DOI: https://doi.org/10.60087/jklst.vol2.n2.p512

Introduction

Artificial Intelligence (AI) is rapidly reshaping the landscape of software development, holding promise for
substantial enhancements in the software engineering process [1]. Software development, a multifaceted endeavor
encompassing analysis and coding phases [2], [3], often proves to be a resource-intensive endeavor, particularly
within environments characterized by adherence to procedures, standards, and team structures [4]. Within this

 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Vol. 2, Issue 2,2023 501

context, Automated Code Generation (ACG) [5] emerges as a pivotal aspect of software development, increasingly
leveraging machine learning (ML) and artificial intelligence (AI) techniques. ACG endeavors to automate repetitive
and time-consuming tasks, thereby empowering developers to focus on higher-level design and problem-solving.
Notably, recent years have witnessed a surge in the exploration of AI methodologies, particularly deep learning
(DL), for ACG, owing to significant advancements in this domain. The integration of AI Techniques (AIT) in ACG
represents a paradigm shift in software development. Machine learning (ML) and DL algorithms have been
harnessed to automate diverse facets of the code generation process [6], [7], prompting researchers to conduct
surveys and systematic reviews to gauge the efficacy of various approaches, such as natural language processing
(NLP) and source code analysis, in automating code generation [8], [9]. Moreover, developers have benefited from
AI-powered coding companions, exemplified by offerings from companies like Amazon [10]. The application of AI
in code generation spans various domains, including web development, mobile applications, and industrial
automation [11], [12], [13].

This advancement has given rise to models and tools capable of generating code from natural language (NL)
descriptions [14], sketches, and other input modalities [15], [16], culminating in accelerated software development
and reduced programming efforts [17], [18]. Nonetheless, challenges persist, encompassing the evaluation of AI-
based code generators and the assurance of code quality [19], [20].

Problem Statement and Significance:

The central challenge lies in evaluating and contrasting different AITs for ACG within software development,
wherein AI holds the potential to enhance all phases of the software development life cycle [21]. This research
endeavors to discern the strengths and weaknesses of diverse AITs, gauge their applicability across varied code
generation tasks, and pinpoint avenues for refinement.

By furnishing a comparative assessment of AIT, this paper aims to furnish researchers and practitioners with
insights to inform the selection of suitable techniques for ACG, ultimately elevating the efficiency and quality of
software development processes.

Paper Structure
The paper unfolds as follows:
- Section 2 delves into a comprehensive literature review and discussion, contrasting traditional and AI
methodologies in code generation, along with their respective constraints.
- Section 3 elucidates the latest advancements in AI Techniques (AIT) for Automated Code Generation (ACG).
- Section 4 scrutinizes the challenges and limitations inherent in AI-driven code generation.
- Section 5 embarks on a comparative analysis of these AITs, accentuating their strengths and weaknesses.
- Section 6 delineates future directions and avenues for further research.
- Finally, Section 7 draws the paper to a close, encapsulating the key findings and furnishing recommendations for
researchers and practitioners alike.

Objectives and Motivation

This paper seeks to undertake a thorough and comparative examination of AI Techniques (AIT) for Automated
Code Generation (ACG) within the realm of software development. It aims to scrutinize advancements, confront
challenges, and chart future directions in this domain. Through a meticulous comparison of various AIT,
encompassing their strengths, weaknesses, and practical implementations, the paper endeavors to empower
stakeholders with insights for informed decision-making and advocate for the adoption of efficacious AI-driven
code generation methodologies. The impetus behind conducting such a comparative review of AIT for ACG in
software development arises from several pivotal factors, as delineated in Table 1.

502 Prachi Tembhekar, Munivel Devan, Jawaharbabu Jeyaraman

This section encapsulates a diverse array of
Code Generation (ACG). Our exploration is segmented into six fundamental approaches, each representing a distinct
perspective and methodology within the domain of code generation.

Traditional Approaches
Preceding the advent of Machine Learning (ML) and Deep Learning (DL) algorithms, traditional automated code
generation methods rely on rule-based (RB) systems, template
programming methodologies [22]. RB code generation operates on predefined rules or patterns to transform high
level specifications into executable code, proving particularly efficacious in domains characterized by repetitive and
well-defined code patterns.

On the other hand, TB code generation leverages pre
to input specific values or logic. These templates are instantiated by the code generation system, commonly
employed in frameworks or specialized code generators fo
domains.

Furthermore, traditional methods incorporate domain
furnishing expressive, domain-specific syntax for articulating code generation requisit
system then translates these high-level specifications into tangible code in the target programming language. While
these traditional techniques automate the code generation process through predefined rules, templates, and domain
specific abstractions [22], they may necessitate manual efforts in rule or template definition and could encounter
limitations in handling complex or evolving code generation tasks.

Rule-Based Systems
RB code generation hinges on predefined rules and patter
language descriptions. These systems harness expert knowledge encoded in rules to map input specifications to code
structures. RB systems find widespread application in industrial automation and s
the generation process can be well-defined and rule
over the generated code, RB systems may entail extensive rule engineering and could falter in handling
ambiguous specifications effectively. Typically, RB systems employ a set of rules expressed in a declarative
language, such as Prolog [24].

 Machine Learning (ML)

Prachi Tembhekar, Munivel Devan, Jawaharbabu Jeyaraman

Literature Review
This section encapsulates a diverse array of methodologies and technologies pivotal to the evolution of Automated
Code Generation (ACG). Our exploration is segmented into six fundamental approaches, each representing a distinct
perspective and methodology within the domain of code generation.

Preceding the advent of Machine Learning (ML) and Deep Learning (DL) algorithms, traditional automated code
based (RB) systems, template-based (TB) techniques, and other conventional

s [22]. RB code generation operates on predefined rules or patterns to transform high
level specifications into executable code, proving particularly efficacious in domains characterized by repetitive and

code generation leverages pre-defined code fragments with placeholders, enabling developers
to input specific values or logic. These templates are instantiated by the code generation system, commonly
employed in frameworks or specialized code generators for expedited code generation in specific languages or

Furthermore, traditional methods incorporate domain-specific languages (DSLs) or modeling languages [20],
specific syntax for articulating code generation requisites. The code generation

level specifications into tangible code in the target programming language. While
these traditional techniques automate the code generation process through predefined rules, templates, and domain

ecific abstractions [22], they may necessitate manual efforts in rule or template definition and could encounter
limitations in handling complex or evolving code generation tasks.

RB code generation hinges on predefined rules and patterns to derive code from high-level specifications or natural
language descriptions. These systems harness expert knowledge encoded in rules to map input specifications to code
structures. RB systems find widespread application in industrial automation and specific application domains where

defined and rule-based [13], [23]. Although they offer interpretability and control
over the generated code, RB systems may entail extensive rule engineering and could falter in handling
ambiguous specifications effectively. Typically, RB systems employ a set of rules expressed in a declarative

methodologies and technologies pivotal to the evolution of Automated
Code Generation (ACG). Our exploration is segmented into six fundamental approaches, each representing a distinct

Preceding the advent of Machine Learning (ML) and Deep Learning (DL) algorithms, traditional automated code
based (TB) techniques, and other conventional

s [22]. RB code generation operates on predefined rules or patterns to transform high-
level specifications into executable code, proving particularly efficacious in domains characterized by repetitive and

defined code fragments with placeholders, enabling developers
to input specific values or logic. These templates are instantiated by the code generation system, commonly

r expedited code generation in specific languages or

specific languages (DSLs) or modeling languages [20],
es. The code generation

level specifications into tangible code in the target programming language. While
these traditional techniques automate the code generation process through predefined rules, templates, and domain-

ecific abstractions [22], they may necessitate manual efforts in rule or template definition and could encounter

level specifications or natural
language descriptions. These systems harness expert knowledge encoded in rules to map input specifications to code

pecific application domains where
based [13], [23]. Although they offer interpretability and control

over the generated code, RB systems may entail extensive rule engineering and could falter in handling complex or
ambiguous specifications effectively. Typically, RB systems employ a set of rules expressed in a declarative

 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Vol. 2, Issue 2,2023 503

ML techniques have emerged as a cornerstone in code generation endeavors. ML-based approaches often entail
training models on extensive code repositories to discern patterns, relationships, and common coding practices,
subsequently generating code based on the acquired knowledge. Techniques like statistical language models,
recurrent neural networks (RNNs), and transformers have found application in tasks such as auto-completion, code
summarization, and code generation [25], [2], [11]. While ML-based approaches excel in capturing intricate data
patterns, they may encounter challenges with rare or unseen coding scenarios and necessitate substantial amounts of
training data. For instance, Amazon's ML-powered service, CodeWhisperer [26], furnishes code recommendations
for developers based on their natural comments.

Natural Language Processing (NLP)
Natural Language Processing (NLP) serves as a potent tool for generating code from natural language (NL)
descriptions [27], [28]. Techniques within NLP, such as parsing, neural language models, sequence-to-sequence
models [11], semantic analysis, and machine translation, are harnessed for this purpose. Further, a study [29] delves
into integrating external knowledge sources to augment NLP-based code generation. Another research endeavor [27]
employs Deep Learning (DL) techniques for code generation from NL descriptions, exploring neural network
architectures like sequence-to-sequence models. This investigation underscores the adeptness of DL models in
capturing intricate relationships between NL and code, particularly highlighting their efficacy in handling long-
range dependencies within NL descriptions, thereby enhancing code generation performance [27].

Deep Learning (DL)
Deep Learning (DL) models, including CodeGRU and deep transfer learning, have been devised to model and
generate source code [30], [31]. Recurrent Neural Networks (RNNs) [32] adeptly capture sequential dependencies in
code, facilitating the generation of code snippets or entire functions. Transformers, exemplified by models like GPT
[33], [34] and BERT [35], have gained prominence in code generation tasks [27], [30], [31], enabling models to
attend to relevant code contexts and generate code with heightened context awareness [7]. Graph Neural Networks
(GNNs) [36] prove instrumental in handling code represented as graphs, effectively capturing relationships between
code entities [15]. DL techniques excel in capturing complex patterns and generating code with enhanced accuracy
[7]. However, they necessitate large volumes of labeled training data, substantial computational resources, and may
suffer from interpretability issues.

 Evolutionary Algorithms (EAs)
Evolutionary Algorithms (EAs), a type of ML algorithm, offer a distinct approach to code generation by iteratively
mutating and evolving existing code. EAs commence with a population of randomly generated code, iteratively
selecting the best-performing individuals and mutating them to generate new solutions. This iterative process
continues until a satisfactory solution is attained. EAs offer several advantages: they facilitate the generation of
efficient and maintainable code [37], adaptable across different programming languages, platforms, and applications
[37].

Furthermore, research efforts like [39] propose novel approaches to software development employing artificial
agents to automate code generation processes. Another study [21] explores the integration of AI into the Software
Development Life Cycle (SDLC), positing that AI can automate various tasks within the SDLC, including
requirements gathering, analysis, and validation. Such integration holds the promise of significant productivity
enhancements and elevated software quality.

The Progress in AI Techniques for Automated Code Generation

The evolution of AI Techniques (AIT) has spurred a notable surge in the adoption of Automated Code Generation
(ACG) in recent times [21]. An array of AITs has been leveraged for code generation, encompassing Rule-Based
(RB) systems, Machine Learning (ML), Deep Learning (DL), Natural Language Processing (NLP), and
Evolutionary Algorithms (EAs).

 Recent Strides Forward

This section delineates the latest and most noteworthy advancements in AI for ACG across diverse domains,
alongside a comprehensive overview of the AI applications employed for ACG, as illustrated in Table 2.

504 Prachi Tembhekar, Munivel Devan, Jawaharbabu Jeyaraman

No AIApplication Description
1 CodeGRU Acontext-awareDeepLearning(DL)modelwithgatedrecurrentunit(GRU)

architectureforsourcecodemodeling[30].
2 Amazon

CodeWhisperer
AnMachineLearning(ML)-poweredcodingcompaniondevelopedbyAmazonthat

assistsdevelopersinwritingcodemoreefficientlyandeffectively[26].
3 BERTGen Amulti-taskgenerationmodelbasedonBERT(BidirectionalEncoderRepresentations

fromTransformers)forcodegenerationtasks[35].
4 GPT-3 Astate-of-the-artlanguagemodeldevelopedbyOpenAI[41]thatcanbeusedfor various

Natural Language Processing (NLP) tasks [42], including code generation.
5 DeepCoder AneuralnetworkwithleakyReLUachievesthebestperformancewhencomparedto

otherapproaches[45].
6 DL Code

Completion
ADL-basedcodecompletionapproachthatuseslanguagemodelstopredictthenext

codetokengivenapartialcodesequence[43].
7 DL Code

Editors (e.g.,
GitHub's

Copilot) [41]

CodeeditorspoweredbyDLmodelsthatprovideintelligentcodecompletionand generation
suggestions to developers, and can even write entire programs [43], [44]

8 CodeGAN A model utilizing neural networks and NLP techniques to generate code fromhigh-
level descriptions or code snippets [6].

9 AlphaCode ADLmodelachievinghuman-levelperformanceontheCodeforcesplatform[46].
10 Tree-Structured

Architectures
Approachesusingtree-basedrepresentationsofcodesyntaxtoguidecodegenerationand

enhancethestructuralcoherenceofgeneratedcode[19].
11 RB Code

Generation
TechniquesusingRule-Based(RB)systemstogeneratecodebasedonpredefinedrules

andpatterns[23],[47].
12 EAsforCode

Generation
GeneticprogrammingandEvolutionaryAlgorithms(EAs)appliedtocodegeneration

tasks,optimizingcodegenerationthroughevolutionaryprocesses[38],[48],[49].
13 TB Code

Generation
Approachesusingtemplatesandpatternstogeneratecodebasedonpredefinedstructures

andrules[50],[51],[52].
14 Frameworks

(e.g.,
Tensorflow,

PyTorch)

Powerful tools andAPIs forbuilding and deploying codegeneration models, enabling
researchers and developers to use cutting-edge DL techniques [2], [25]

15 Google Cloud
AutoML Code

[50].

AservicethatusesMLtogeneratecodeforvariousprogramminglanguagesand platforms
[53].

Advantages and Enhancements Enabled by AI-driven Code Generation

1. Boosted Productivity and Efficiency: AI-powered code generation automates repetitive and time-intensive tasks
in software development, freeing up developers to focus on higher-level objectives. By swiftly generating code
snippets, templates, or even entire programs, it significantly reduces development time and effort [18], [25].

2. Elevated Code Quality: AI models can analyze extensive codebases, discern patterns, and glean best coding
practices from high-quality existing code. This capability enables them to produce code that aligns with industry
standards, adheres to coding conventions, and embodies sound software engineering principles. Consequently, the
generated code exhibits enhanced readability, maintainability, and modularity while being less prone to errors [25],
[2].

3. Facilitation of Code Generation from Alternative Representations: AI models adeptly generate code from diverse
representations, including images, diagrams, or sketches. This empowers developers to visually or graphically
express their ideas, seamlessly converting them into executable code. Such capability fosters low-code or no-code

 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Vol. 2, Issue 2,2023 505

development paradigms and empowers individuals with limited coding skills to craft functional applications [54],
[55].

4. Code Completion and Autocompletion: AI models trained on extensive code repositories offer intelligent code
completion suggestions based on context. They predict subsequent lines of code, propose suitable function calls,
recommend variable names, and furnish valuable documentation. This feature expedites the coding process and
minimizes the likelihood of syntactic or logical errors [25], [43].

5. Support for Code Refactoring: AI models facilitate code refactoring by proffering automatic suggestions for
improvements or generating refactored code snippets. This aids developers in enhancing the structure, organization,
and performance of existing codebases [2].

6. Harnessing Transfer Learning and Knowledge Sharing: AI models trained on vast codebases assimilate the
knowledge and expertise ingrained within the code [31].

7. Continuous Learning and Enhancement: AI models can undergo continuous training on fresh code repositories,
assimilating the latest coding practices and trends [6], [56].

8. Bridging the Gap between Natural Language (NL) and Code: AI models adeptly comprehend NL descriptions of
software requirements or functionalities and subsequently generate corresponding code [27], [10].

Application Benefits Impact LessonsLearned
Amazon

CodeWhisperer[26
]

- Context-aware
code completion
and bug detection

- Improved coding
efficiency

-AI-poweredcodingcompanionscan
enhance developer productivity

AutomaticHTML
Code Generation

[57]][9]

-Fasterfront-end
development

-Reducedmanualcoding
efforts

-AITcanautomaterepetitiveandtime-
consuming tasks in web development

MobileApplication
Development [55]

-Simplifiedmobile
app development

-Reducedprogramming
efforts

-AI-basedcodegenerationfromsketches
 can facilitate rapid

prototypinganddevelopmentofmobile
applications

Function Block
Applications [37]

- Automatic
generation of
function block

applications

- Faster and more
efficient

developmentinautomatio
n

- Evolutionaryalgorithms can optimize
industrial automation systems

Source Code
Modeling and

Generation [43]

-ACGbasedon
learned patterns

-Improvedcodequality
and consistency

-DLmodelscancapturecomplex patterns
and structures in source code

Natural Language
toCodeGeneration
[58]

- Translation of
natural language
descriptionsinto

code.

- Enables non-
programmers to
express intentions in
code

- NLP techniques can bridge the gap
between human language and
programming languages.

Addressing the Challenges, Constraints, and Ethical Considerations

The integration of Artificial Code Generation (ACG) with Artificial Intelligence Technologies (AITs) has recently
attracted significant attention due to its potential to enhance productivity and efficiency in software development.
However, this promising approach is not without its challenges and limitations. This section explores some of the
key hurdles and ethical considerations associated with ACG and AITs.

1. Inadequate Training Data: A major obstacle in AI-based code generation is the scarcity of high-quality training

506 Prachi Tembhekar, Munivel Devan, Jawaharbabu Jeyaraman

data. ML models rely on extensive and diverse datasets to effectively learn patterns within the target problem
domain. Yet, acquiring such datasets for code generation tasks is often hindered by factors like proprietary
codebases or limited access to labeled examples.

2. Lack of Contextual Understanding: AI models may struggle to grasp the context and requirements of code
generation tasks, particularly when faced with intricate or domain-specific scenarios. This difficulty in capturing the
nuances of programming languages, frameworks, and libraries can result in subpar code generation outcomes.

3. Insufficient Training Data Availability: The availability of training data poses a significant challenge in code
generation endeavors. Creating comprehensive and diverse training datasets that encompass various programming
languages, frameworks, and coding styles remains a formidable task.

4. Handling Ambiguities: Code generation tasks frequently entail navigating ambiguous or incomplete
specifications, posing a challenge for AI models to produce accurate and desired code. Ambiguities in natural
language descriptions or incomplete requirements can lead to code that fails to meet intended functionality.

5. Scalability and Performance Concerns: Scaling AI models for large-scale code generation can incur substantial
computational expenses and time investments. Generating complex codebases or working with extensive code
repositories may strain computational resources and efficiency.

6. Overfitting and Generalization Issues: AI models trained for code generation are susceptible to overfitting, where
they memorize specific patterns from the training data but struggle to generalize to unseen examples. Striking a
balance between capturing common patterns and promoting generalization is pivotal in fostering robust and
adaptable code generation systems.

7. Maintenance and Adaptation Challenges: Code generation models must continually adapt to evolving
programming languages, libraries, and frameworks. Maintaining and updating these models to accommodate new
features and coding practices demands considerable time and resources.

8. Flexibility versus Guided Generation: Achieving a balance between generating code that fulfills specific
requirements while allowing room for developer customization is a delicate endeavor. AI models need to offer
customization options without overwhelming developers with an excessive array of choices.

9. Trust and Safety Concerns: Ensuring the trustworthiness and safety of generated code is paramount as AI models
increasingly automate code generation processes. Addressing issues such as bias, security vulnerabilities, and
unintended consequences is crucial in fostering trust in AI-generated code.

10. Adoption and Acceptance Challenges: Widely adopting AIT for ACG may encounter resistance and skepticism
from developers and industry stakeholders. Building trust, showcasing value, and mitigating concerns regarding job
displacement and loss of control are pivotal in facilitating the adoption of AIT in code generation.

11. Code Complexity and Variability: Codebases exhibit high complexity and considerable variability across
projects and programming languages, posing challenges for AIT in code generation. Grappling with the intricacies
of code syntax, semantics, and idiomatic patterns complicates the generation of accurate and high-quality code.

12. Capturing Context and Intent: Understanding the context and intent of code generation tasks is crucial for
producing meaningful code. However, AI models may struggle to glean complete context and accurately interpret
developer intent from limited information, exacerbating challenges in the code generation process.

13. Limited Support for Domain-Specific Languages and Libraries: AIT for code generation predominantly focuses
on popular programming languages and libraries, neglecting domain-specific languages or libraries with limited
available training data. Adapting AI models to support specialized domains presents challenges due to resource
constraints and specialized knowledge requirements.

 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Vol. 2, Issue 2,2023 507

14. Debugging and Maintenance Complexity: Generated code may contain bugs, logical errors, or performance
inefficiencies, posing challenges for debugging and maintenance. Addressing these issues raises concerns about the
reliability and maintainability of AI-generated code.

In navigating these challenges and ethical considerations, it is imperative to foster ongoing research, collaboration,
and responsible deployment of AIT in code generation to realize its full potential while mitigating associated risks.

Exploring Ethical Considerations

The integration of Artificial Intelligence Technologies (AIT) in Artificial Code Generation (ACG) brings to light
various ethical and legal concerns, especially in scenarios involving code utilized in safety-critical systems or
handling sensitive data. Ensuring that the generated code aligns with security, privacy, and ethical standards poses
substantial challenges and necessitates meticulous validation and verification processes. AI-generated code
introduces ethical considerations, biases, and potential risks that must be addressed to uphold responsible and safe
usage. Here are key aspects to ponder:

1. Bias and Fairness: AI models trained on biased or limited datasets may produce code reflecting those biases,
perpetuating inequalities. Mitigating bias during training by incorporating diverse and representative datasets is
crucial to fostering fairness and inclusivity.

2. Reliability and Accountability: AI-generated code may harbor errors or unintended consequences, emphasizing
the importance of rigorous verification and testing to ensure correctness, robustness, and safety. Developers and
users must acknowledge the limitations of AI-generated code and assume responsibility for its outcomes.

3. Privacy and Security: Given that AI models used for code generation may handle sensitive or proprietary data,
safeguarding data privacy and ensuring secure code generation are paramount. Implementing stringent security
measures is essential to prevent unauthorized access and misuse of AI-generated code.

4. Transparency and Explainability: The opaque nature of AI models used in code generation poses challenges in
understanding their decision-making processes. Enhancing transparency and explainability in AI systems is vital for
building trust and facilitating effective auditing, debugging, and compliance with legal and ethical standards.

5. Intellectual Property and Copyright: Concerns regarding intellectual property and copyright may arise with AI-
generated code. Developers must ensure that generated code adheres to legal and licensing requirements while
respecting intellectual property rights.

6. Unemployment and Job Displacement: The automation of software development through AI-generated code has
implications for employment in the software engineering field. While AI can enhance developers' capabilities,
efforts should be made to reskill and upskill individuals to mitigate potential job displacement and address the
evolving employment landscape.

7. Human Oversight and Control: AI-generated code should complement rather than replace human decision-
making. Maintaining human oversight and control over the generated code is essential to ensure alignment with
ethical and legal standards. Human intervention is necessary for reviewing, validating, and modifying the generated
code as necessary.

Managing these ethical considerations, biases, and potential risks associated with the use of AIT for ACG is crucial
to promoting responsible and ethical practices in software development. Table 4 provides a summary of the main
ethical considerations, biases, and potential risks related to utilizing AIT for ACG, emphasizing the importance of
careful management to ensure ethical and responsible ACG implementation.

508 Prachi Tembhekar, Munivel Devan, Jawaharbabu Jeyaraman

Concluding Remarks

In this study, we delved into various Artificial Intelligence Technologies (AITs) utilized for Artificial Code
Generation (ACG) in software development, offering comparisons between traditional and AI-driven approaches
while exploring the integration of AI techniques in code generation. Our analysis highlighted the strengths and
limitations of different AITs, encompassing Rule-Based (RB) systems, Machine Learning (ML), and Deep Learning
(DL).

These techniques have showcased significant advancements in code generation, contributing to enhanced efficiency
and code quality. We examined their relevance and adaptability across diverse code generation tasks, presenting
recent innovations and real-world applications that underscore their efficacy. Additionally, we scrutinized
commonly used evaluation metrics for assessing the performance of AI-based code generation systems.

However, despite the promise they hold, AI techniques for code generation present challenges and limitations.
Issues such as data requirements and availability for training AI models, scalability, efficiency, and the
interpretability of AI-generated code demand attention and resolution.

These considerations will play a pivotal role in shaping the adoption and integration of AI techniques in practical
software development contexts. Our comparative analysis offers insights into the strengths and weaknesses of each
AI technique, empowering researchers and practitioners to make informed decisions tailored to specific
requirements and constraints.

The implications of AI-based code generation in software development are profound. By automating tedious and
repetitive code generation tasks, developers can allocate more time to higher-level design and critical problem-
solving activities. This, in turn, can yield heightened productivity, accelerated software development cycles, and
elevated software quality.

References List

[1]. Shuford, J. (2023). Contribution of Artificial Intelligence in Improving Accessibility for
Individuals with Disabilities. Journal of Knowledge Learning and Science Technology ISSN:
2959-6386 (online), 2(2), 421-433.
DOI: https://doi.org/10.60087/jklst.vol2.n2.p433

[2]. Chentha, A. K., Sreeja, T. M., Hanno, R., Purushotham, S. M. A., & Gandrapu, B. B. (2013).
A Review of the Association between Obesity and Depression. Int J Biol Med Res, 4(3), 3520-
3522.

[3]. Gadde, S. S., & Kalli, V. D. R. (2020). Descriptive analysis of machine learning and its
application in healthcare. Int J Comp Sci Trends Technol, 8(2), 189-196.

 [4]. Atacho, C. N. P. (2023). A Community-Based Approach to Flood Vulnerability
Assessment: The Case of El Cardón Sector. Journal of Knowledge Learning and Science

 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Vol. 2, Issue 2,2023 509

Technology ISSN: 2959-6386 (online), 2(2), 434-482.
DOI:https://doi.org/10.60087/jklst.vol2.n2.p482

[5]. jimmy, fnu. (2023). Understanding Ransomware Attacks: Trends and Prevention Strategies.
Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 2(1), 180-
210. https://doi.org/10.60087/jklst.vol2.n1.p214

[6]. Bayani, S. V., Prakash, S., & Malaiyappan, J. N. A. (2023). Unifying Assurance A
Framework for Ensuring Cloud Compliance in AIML Deployment. Journal of Knowledge
Learning and Science Technology ISSN: 2959-6386 (online), 2(3), 457-472. DOI:
https://doi.org/10.60087/jklst.vol2.n3.p472

[7]. Bayani, S. V., Prakash, S., & Shanmugam, L. (2023). Data Guardianship: Safeguarding
Compliance in AI/ML Cloud Ecosystems. Journal of Knowledge Learning and Science
Technology ISSN: 2959-6386 (online), 2(3), 436-456.
DOI: https://doi.org/10.60087/jklst.vol2.n3.p456

[8]. Karamthulla, M. J., Malaiyappan, J. N. A., & Prakash, S. (2023). AI-powered Self-healing
Systems for Fault Tolerant Platform Engineering: Case Studies and Challenges. Journal of
Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 2(2), 327-338. DOI:
https://doi.org/10.60087/jklst.vol2.n2.p338

[9]. Prakash, S., Venkatasubbu, S., & Konidena, B. K. (2023). Unlocking Insights: AI/ML
Applications in Regulatory Reporting for US Banks. Journal of Knowledge Learning and
Science Technology ISSN: 2959-6386 (online), 1(1), 177-184. DOI:
https://doi.org/10.60087/jklst.vol1.n1.p184

[10]. Prakash, S., Venkatasubbu, S., & Konidena, B. K. (2023). From Burden to Advantage:
Leveraging AI/ML for Regulatory Reporting in US Banking. Journal of Knowledge Learning
and Science Technology ISSN: 2959-6386 (online), 1(1), 167-176. DOI:
https://doi.org/10.60087/jklst.vol1.n1.p176

[11]. Prakash, S., Venkatasubbu, S., & Konidena, B. K. (2022). Streamlining Regulatory
Reporting in US Banking: A Deep Dive into AI/ML Solutions. Journal of Knowledge Learning
and Science Technology ISSN: 2959-6386 (online), 1(1), 148-166. DOI:
https://doi.org/10.60087/jklst.vol1.n1.p166

 [12]. Tomar, M., & Jeyaraman, J. (2023). Reference Data Management: A Cornerstone of
Financial Data Integrity. Journal of Knowledge Learning and Science Technology ISSN: 2959-
6386 (online), 2(1), 137-144. DOI: https://doi.org/10.60087/jklst.vol2.n1.p144

[13]. Tomar, M., & Periyasamy, V. (2023). The Role of Reference Data in Financial Data
Analysis: Challenges and Opportunities. Journal of Knowledge Learning and Science
Technology ISSN: 2959-6386 (online), 1(1), 90-99.
DOI: https://doi.org/10.60087/jklst.vol1.n1.p99

510 Prachi Tembhekar, Munivel Devan, Jawaharbabu Jeyaraman

[14]. Tomar, M., & Periyasamy, V. (2023). Leveraging Advanced Analytics for Reference Data
Analysis in Finance. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386
(online), 2(1), 128-136.
DOI: https://doi.org/10.60087/jklst.vol2.n1.p136

[15]. Sharma, K. K., Tomar, M., & Tadimarri, A. (2023). Unlocking Sales Potential: How AI
Revolutionizes Marketing Strategies. Journal of Knowledge Learning and Science Technology
ISSN: 2959-6386 (online), 2(2), 231-250.
DOI: https://doi.org/10.60087/jklst.vol2.n2.p250

[16]. Sharma, K. K., Tomar, M., & Tadimarri, A. (2023). Optimizing Sales Funnel Efficiency:
Deep Learning Techniques for Lead Scoring. Journal of Knowledge Learning and Science
Technology ISSN: 2959-6386 (online), 2(2), 261-274.
DOI: https://doi.org/10.60087/jklst.vol2.n2.p274

[17]. Shanmugam, L., Tillu, R., & Tomar, M. (2023). Federated Learning Architecture: Design,
Implementation, and Challenges in Distributed AI Systems. Journal of Knowledge Learning and
Science Technology ISSN: 2959-6386 (online), 2(2), 371-384.
DOI: https://doi.org/10.60087/jklst.vol2.n2.p384

[18]. Sharma, K. K., Tomar, M., & Tadimarri, A. (2023). AI-driven Marketing: Transforming
Sales Processes for Success in the Digital Age. Journal of Knowledge Learning and Science
Technology ISSN: 2959-6386 (online), 2(2), 250-260.
DOI: https://doi.org/10.60087/jklst.vol2.n2.p260

 [19]. Gadde, S. S., & Kalli, V. D. (2021). The Resemblance of Library and Information Science
with Medical Science. International Journal for Research in Applied Science & Engineering
Technology, 11(9), 323-327.

[20]. Gadde, S. S., & Kalli, V. D. R. (2020). Technology Engineering for Medical Devices-A
Lean Manufacturing Plant Viewpoint. Technology, 9(4).

[21]. Gadde, S. S., & Kalli, V. D. R. (2020). Medical Device Qualification Use. International
Journal of Advanced Research in Computer and Communication Engineering, 9(4), 50-55.

[22]. Gadde, S. S., & Kalli, V. D. R. (2020). Artificial Intelligence To Detect Heart Rate
Variability. International Journal of Engineering Trends and Applications, 7(3), 6-10.

[23]. Chentha, A. K., Sreeja, T. M., Hanno, R., Purushotham, S. M. A., & Gandrapu, B. B.
(2013). A Review of the Association between Obesity and Depression. Int J Biol Med Res, 4(3),
3520-3522.

[24]. Tao, Y. (2022). Algorithm-architecture co-design for domain-specific accelerators in
communication and artificial intelligence (Doctoral dissertation).
https://deepblue.lib.umich.edu/handle/2027.42/172593

 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Vol. 2, Issue 2,2023 511

[25]. Tao, Y., Cho, S. G., & Zhang, Z. (2020). A configurable successive-cancellation list polar
decoder using split-tree architecture. IEEE Journal of Solid-State Circuits, 56(2), 612-623.
DOI: https://doi.org/10.1109/JSSC.2020.3005763

[26]. Tao, Y., & Choi, C. (2022, May). High-Throughput Split-Tree Architecture for Nonbinary
SCL Polar Decoder. In 2022 IEEE International Symposium on Circuits and Systems (ISCAS)
(pp. 2057-2061). IEEE.
DOI: https://doi.org/10.1109/ISCAS48785.2022.9937445

[27]. Tao, Y. (2022). Algorithm-architecture co-design for domain-specific accelerators in
communication and artificial intelligence (Doctoral dissertation).
https://deepblue.lib.umich.edu/handle/2027.42/172593

[28]. Mahalingam, H., Velupillai Meikandan, P., Thenmozhi, K., Moria, K. M., Lakshmi, C.,
Chidambaram, N., & Amirtharajan, R. (2023). Neural attractor-based adaptive key generator
with DNA-coded security and privacy framework for multimedia data in cloud environments.
Mathematics, 11(8), 1769.
https://doi.org/10.3390/math11081769

[29]. Padmapriya, V. M., Thenmozhi, K., Praveenkumar, P., & Amirtharajan, R. (2020). ECC
joins first time with SC-FDMA for Mission “security”. Multimedia Tools and Applications,
79(25), 17945-17967.
DOI https://doi.org/10.1007/s11042-020-08610-5

[30]. Padmapriya, V. M. (2018). Image transmission in 4g lte using dwt based sc-fdma system.
Biomedical & Pharmacology Journal, 11(3), 1633.
DOI : https://dx.doi.org/10.13005/bpj/1531

[31]. Padmapriya, V. M., Priyanka, M., Shruthy, K. S., Shanmukh, S., Thenmozhi, K., &
Amirtharajan, R. (2019, March). Chaos aided audio secure communication over SC-FDMA
system. In 2019 International Conference on Vision Towards Emerging Trends in
Communication and Networking (ViTECoN) (pp. 1-5). IEEE.
https://doi.org/10.1109/ViTECoN.2019.8899413

[31]. Padmapriya, V. M., Thenmozhi, K., Praveenkumar, P., & Amirtharajan, R. (2022).
Misconstrued voice on SC-FDMA for secured comprehension-a cooperative influence of DWT
and ECC. Multimedia Tools and Applications, 81(5), 7201-7217.
DOI https://doi.org/10.1007/s11042-022-11996-z

[32]. Padmapriya, V. M., Sowmya, B., Sumanjali, M., & Jayapalan, A. (2019, March). Chaotic
Encryption based secure Transmission. In 2019 International Conference on Vision Towards
Emerging Trends in Communication and Networking (ViTECoN) (pp. 1-5). IEEE.
DOI https://doi.org/10.1109/ViTECoN.2019.8899588

[33]. Sowmya, B., Padmapriya, V. M., Sivaraman, R., Rengarajan, A., Rajagopalan, S., &

512 Prachi Tembhekar, Munivel Devan, Jawaharbabu Jeyaraman

Upadhyay, H. N. (2021). Design and Implementation of Chao-Cryptic Architecture on FPGA for
Secure Audio Communication. In Emerging Technologies in Data Mining and Information
Security: Proceedings of IEMIS 2020, Volume 3 (pp. 135-144). Springer Singapore
https://link.springer.com/chapter/10.1007/978-981-15-9774-9_13

[34]. Padmapriya, V. M., Thenmozhi, K., Avila, J., Amirtharajan, R., & Praveenkumar, P.
(2020). Real Time Authenticated Spectrum Access and Encrypted Image Transmission via Cloud
Enabled Fusion centre. Wireless Personal Communications, 115, 2127-2148.
DOI https://doi.org/10.1007/s11277-020-07674-8

[35]. Kommaraju, V., Gunasekaran, K., Li, K., Bansal, T., McCallum, A., Williams, I., & Istrate,
A. M. (2020). Unsupervised pre-training for biomedical question answering. arXiv preprint
arXiv:2009.12952.

[36]. Bansal, T., Gunasekaran, K., Wang, T., Munkhdalai, T., & McCallum, A. (2021). Diverse
distributions of self-supervised tasks for meta-learning in NLP. arXiv preprint
arXiv:2111.01322.

[37]. Gunasekaran, K., Tiwari, K., & Acharya, R. (2023, June). Utilizing deep learning for
automated tuning of database management systems. In 2023 International Conference on
Communications, Computing and Artificial Intelligence (CCCAI) (pp. 75-81). IEEE.

[38]. Gunasekaran, K. P. (2023, May). Ultra sharp: Study of single image super resolution using
residual dense network. In 2023 IEEE 3rd International Conference on Computer
Communication and Artificial Intelligence (CCAI) (pp. 261-266). IEEE.

[39]. Gillespie, A., Yirsaw, A., Gunasekaran, K. P., Smith, T. P., Bickhart, D. M., Turley, M., ...
& Baldwin, C. L. (2021). Characterization of the domestic goat γδ T cell receptor gene loci and
gene usage. Immunogenetics, 73, 187-201.

[40]. Yirsaw, A. W., Gillespie, A., Zhang, F., Smith, T. P., Bickhart, D. M., Gunasekaran, K. P.,
... & Baldwin, C. L. (2022). Defining the caprine γδ T cell WC1 multigenic array and evaluation
of its expressed sequences and gene structure conservation among goat breeds and relative to
cattle. Immunogenetics, 74(3), 347-365.

[41]. Gunasekaran, K. P., Babrich, B. C., Shirodkar, S., & Hwang, H. (2023, August).
Text2Time: Transformer-based Article Time Period Prediction. In 2023 IEEE 6th International
Conference on Pattern Recognition and Artificial Intelligence (PRAI) (pp. 449-455). IEEE.

[42]. Gunasekaran, K., & Jaiman, N. (2023, August). Now you see me: Robust approach to
partial occlusions. In 2023 IEEE 4th International Conference on Pattern Recognition and
Machine Learning (PRML) (pp. 168-175). IEEE.

[43]. Gillespie, A., Yirsaw, A., Kim, S., Wilson, K., McLaughlin, J., Madigan, M., ... & Baldwin,
C. L. (2021). Gene characterization and expression of the γδ T cell co-receptor WC1 in sheep.

 Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Vol. 2, Issue 2,2023 513

Developmental & Comparative Immunology, 116, 103911.

[44]. Gunasekaran, K. P. (2023). Leveraging object detection for the identification of lung
cancer. arXiv preprint arXiv:2305.15813.

[45]. Gunasekaran, K. P. (2023). Exploring sentiment analysis techniques in natural language
processing: A Comprehensive Review. arXiv preprint arXiv:2305.14842.

[46]. Lee, S., Weerakoon, M., Choi, J., Zhang, M., Wang, D., & Jeon, M. (2022, July). CarM:
Hierarchical episodic memory for continual learning. In Proceedings of the 59th ACM/IEEE
Design Automation Conference (pp. 1147-1152).

[47]. Lee, S., Weerakoon, M., Choi, J., Zhang, M., Wang, D., & Jeon, M. (2021). Carousel
Memory: Rethinking the Design of Episodic Memory for Continual Learning. arXiv preprint
arXiv:2110.07276.

