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Abstract 

Artificial Intelligence (AI) is a pivotal domain within computer science, profoundly influencing the software 
development lifecycle, particularly during the implementation phase. Here, developers grapple with the task of 
translating software requirements and designs into executable code. Automated Code Generation (ACG) leveraging 
AI emerges as a promising solution in this context. The automation of code generation processes is gaining traction 
as a means to tackle diverse software development challenges while boosting productivity. This paper presents a 
thorough review and discourse on both traditional and AI-driven techniques employed in ACG, highlighting their 
respective challenges and constraints. Through an examination of pertinent literature, we identify various AI 
methodologies and algorithms utilized in ACG, extracting evaluation metrics such as Accuracy, Efficiency, 
Scalability, Correctness, Generalization, among others. These metrics serve as the basis for a comparative analysis 
of AI-driven ACG methods, delving into their applications, strengths, weaknesses, performance metrics, and future 
prospects. 
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Introduction 

Artificial Intelligence (AI) is rapidly reshaping the landscape of software development, holding promise for 
substantial enhancements in the software engineering process [1]. Software development, a multifaceted endeavor 
encompassing analysis and coding phases [2], [3], often proves to be a resource-intensive endeavor, particularly 
within environments characterized by adherence to procedures, standards, and team structures [4]. Within this 
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context, Automated Code Generation (ACG) [5] emerges as a pivotal aspect of software development, increasingly 
leveraging machine learning (ML) and artificial intelligence (AI) techniques. ACG endeavors to automate repetitive 
and time-consuming tasks, thereby empowering developers to focus on higher-level design and problem-solving. 
Notably, recent years have witnessed a surge in the exploration of AI methodologies, particularly deep learning 
(DL), for ACG, owing to significant advancements in this domain. The integration of AI Techniques (AIT) in ACG 
represents a paradigm shift in software development. Machine learning (ML) and DL algorithms have been 
harnessed to automate diverse facets of the code generation process [6], [7], prompting researchers to conduct 
surveys and systematic reviews to gauge the efficacy of various approaches, such as natural language processing 
(NLP) and source code analysis, in automating code generation [8], [9]. Moreover, developers have benefited from 
AI-powered coding companions, exemplified by offerings from companies like Amazon [10]. The application of AI 
in code generation spans various domains, including web development, mobile applications, and industrial 
automation [11], [12], [13]. 
 
This advancement has given rise to models and tools capable of generating code from natural language (NL) 
descriptions [14], sketches, and other input modalities [15], [16], culminating in accelerated software development 
and reduced programming efforts [17], [18]. Nonetheless, challenges persist, encompassing the evaluation of AI-
based code generators and the assurance of code quality [19], [20]. 

 
Problem Statement and Significance: 

 
The central challenge lies in evaluating and contrasting different AITs for ACG within software development, 
wherein AI holds the potential to enhance all phases of the software development life cycle [21]. This research 
endeavors to discern the strengths and weaknesses of diverse AITs, gauge their applicability across varied code 
generation tasks, and pinpoint avenues for refinement. 
 
By furnishing a comparative assessment of AIT, this paper aims to furnish researchers and practitioners with 
insights to inform the selection of suitable techniques for ACG, ultimately elevating the efficiency and quality of 
software development processes. 
 

Paper Structure 
The paper unfolds as follows:  
- Section 2 delves into a comprehensive literature review and discussion, contrasting traditional and AI 
methodologies in code generation, along with their respective constraints. 
- Section 3 elucidates the latest advancements in AI Techniques (AIT) for Automated Code Generation (ACG). 
- Section 4 scrutinizes the challenges and limitations inherent in AI-driven code generation. 
- Section 5 embarks on a comparative analysis of these AITs, accentuating their strengths and weaknesses. 
- Section 6 delineates future directions and avenues for further research. 
- Finally, Section 7 draws the paper to a close, encapsulating the key findings and furnishing recommendations for 
researchers and practitioners alike. 
 

Objectives and Motivation 
 
This paper seeks to undertake a thorough and comparative examination of AI Techniques (AIT) for Automated 
Code Generation (ACG) within the realm of software development. It aims to scrutinize advancements, confront 
challenges, and chart future directions in this domain. Through a meticulous comparison of various AIT, 
encompassing their strengths, weaknesses, and practical implementations, the paper endeavors to empower 
stakeholders with insights for informed decision-making and advocate for the adoption of efficacious AI-driven 
code generation methodologies. The impetus behind conducting such a comparative review of AIT for ACG in 
software development arises from several pivotal factors, as delineated in Table 1. 
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This section encapsulates a diverse array of 
Code Generation (ACG). Our exploration is segmented into six fundamental approaches, each representing a distinct 
perspective and methodology within the domain of code generation.
 
Traditional Approaches 
Preceding the advent of Machine Learning (ML) and Deep Learning (DL) algorithms, traditional automated code 
generation methods rely on rule-based (RB) systems, template
programming methodologies [22]. RB code generation operates on predefined rules or patterns to transform high
level specifications into executable code, proving particularly efficacious in domains characterized by repetitive and 
well-defined code patterns. 
 
On the other hand, TB code generation leverages pre
to input specific values or logic. These templates are instantiated by the code generation system, commonly 
employed in frameworks or specialized code generators fo
domains. 
 
Furthermore, traditional methods incorporate domain
furnishing expressive, domain-specific syntax for articulating code generation requisit
system then translates these high-level specifications into tangible code in the target programming language. While 
these traditional techniques automate the code generation process through predefined rules, templates, and domain
specific abstractions [22], they may necessitate manual efforts in rule or template definition and could encounter 
limitations in handling complex or evolving code generation tasks.
 
Rule-Based Systems 
RB code generation hinges on predefined rules and patter
language descriptions. These systems harness expert knowledge encoded in rules to map input specifications to code 
structures. RB systems find widespread application in industrial automation and s
the generation process can be well-defined and rule
over the generated code, RB systems may entail extensive rule engineering and could falter in handling 
ambiguous specifications effectively. Typically, RB systems employ a set of rules expressed in a declarative 
language, such as Prolog [24]. 
 
 Machine Learning (ML) 
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Literature Review 
This section encapsulates a diverse array of methodologies and technologies pivotal to the evolution of Automated 
Code Generation (ACG). Our exploration is segmented into six fundamental approaches, each representing a distinct 
perspective and methodology within the domain of code generation. 
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based (RB) systems, template-based (TB) techniques, and other conventional 
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code generation leverages pre-defined code fragments with placeholders, enabling developers 
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employed in frameworks or specialized code generators for expedited code generation in specific languages or 

Furthermore, traditional methods incorporate domain-specific languages (DSLs) or modeling languages [20], 
specific syntax for articulating code generation requisites. The code generation 
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ML techniques have emerged as a cornerstone in code generation endeavors. ML-based approaches often entail 
training models on extensive code repositories to discern patterns, relationships, and common coding practices, 
subsequently generating code based on the acquired knowledge. Techniques like statistical language models, 
recurrent neural networks (RNNs), and transformers have found application in tasks such as auto-completion, code 
summarization, and code generation [25], [2], [11]. While ML-based approaches excel in capturing intricate data 
patterns, they may encounter challenges with rare or unseen coding scenarios and necessitate substantial amounts of 
training data. For instance, Amazon's ML-powered service, CodeWhisperer [26], furnishes code recommendations 
for developers based on their natural comments. 
 
Natural Language Processing (NLP) 
Natural Language Processing (NLP) serves as a potent tool for generating code from natural language (NL) 
descriptions [27], [28]. Techniques within NLP, such as parsing, neural language models, sequence-to-sequence 
models [11], semantic analysis, and machine translation, are harnessed for this purpose. Further, a study [29] delves 
into integrating external knowledge sources to augment NLP-based code generation. Another research endeavor [27] 
employs Deep Learning (DL) techniques for code generation from NL descriptions, exploring neural network 
architectures like sequence-to-sequence models. This investigation underscores the adeptness of DL models in 
capturing intricate relationships between NL and code, particularly highlighting their efficacy in handling long-
range dependencies within NL descriptions, thereby enhancing code generation performance [27]. 
 
Deep Learning (DL) 
Deep Learning (DL) models, including CodeGRU and deep transfer learning, have been devised to model and 
generate source code [30], [31]. Recurrent Neural Networks (RNNs) [32] adeptly capture sequential dependencies in 
code, facilitating the generation of code snippets or entire functions. Transformers, exemplified by models like GPT 
[33], [34] and BERT [35], have gained prominence in code generation tasks [27], [30], [31], enabling models to 
attend to relevant code contexts and generate code with heightened context awareness [7]. Graph Neural Networks 
(GNNs) [36] prove instrumental in handling code represented as graphs, effectively capturing relationships between 
code entities [15]. DL techniques excel in capturing complex patterns and generating code with enhanced accuracy 
[7]. However, they necessitate large volumes of labeled training data, substantial computational resources, and may 
suffer from interpretability issues. 
 
 Evolutionary Algorithms (EAs) 
Evolutionary Algorithms (EAs), a type of ML algorithm, offer a distinct approach to code generation by iteratively 
mutating and evolving existing code. EAs commence with a population of randomly generated code, iteratively 
selecting the best-performing individuals and mutating them to generate new solutions. This iterative process 
continues until a satisfactory solution is attained. EAs offer several advantages: they facilitate the generation of 
efficient and maintainable code [37], adaptable across different programming languages, platforms, and applications 
[37]. 
 
Furthermore, research efforts like [39] propose novel approaches to software development employing artificial 
agents to automate code generation processes. Another study [21] explores the integration of AI into the Software 
Development Life Cycle (SDLC), positing that AI can automate various tasks within the SDLC, including 
requirements gathering, analysis, and validation. Such integration holds the promise of significant productivity 
enhancements and elevated software quality. 

 
The Progress in AI Techniques for Automated Code Generation 

 
The evolution of AI Techniques (AIT) has spurred a notable surge in the adoption of Automated Code Generation 
(ACG) in recent times [21]. An array of AITs has been leveraged for code generation, encompassing Rule-Based 
(RB) systems, Machine Learning (ML), Deep Learning (DL), Natural Language Processing (NLP), and 
Evolutionary Algorithms (EAs). 
 
 Recent Strides Forward 
 
This section delineates the latest and most noteworthy advancements in AI for ACG across diverse domains, 
alongside a comprehensive overview of the AI applications employed for ACG, as illustrated in Table 2. 
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No AIApplication Description 
1 CodeGRU Acontext-awareDeepLearning(DL)modelwithgatedrecurrentunit(GRU) 

architectureforsourcecodemodeling[30]. 
2 Amazon 

CodeWhisperer 
AnMachineLearning(ML)-poweredcodingcompaniondevelopedbyAmazonthat 

assistsdevelopersinwritingcodemoreefficientlyandeffectively[26]. 
3 BERTGen Amulti-taskgenerationmodelbasedonBERT(BidirectionalEncoderRepresentations 

fromTransformers)forcodegenerationtasks[35]. 
4 GPT-3 Astate-of-the-artlanguagemodeldevelopedbyOpenAI[41]thatcanbeusedfor various 

Natural Language Processing (NLP) tasks [42], including code generation. 
5 DeepCoder AneuralnetworkwithleakyReLUachievesthebestperformancewhencomparedto 

otherapproaches[45]. 
6 DL Code 

Completion 
ADL-basedcodecompletionapproachthatuseslanguagemodelstopredictthenext 

codetokengivenapartialcodesequence[43]. 
7 DL Code 

Editors (e.g., 
GitHub's 

Copilot) [41] 

CodeeditorspoweredbyDLmodelsthatprovideintelligentcodecompletionand generation 
suggestions to developers, and can even write entire programs [43], [44] 

8 CodeGAN A model utilizing neural networks and NLP techniques to generate code fromhigh-
level descriptions or code snippets [6]. 

9 AlphaCode ADLmodelachievinghuman-levelperformanceontheCodeforcesplatform[46]. 
10 Tree-Structured 

Architectures 
Approachesusingtree-basedrepresentationsofcodesyntaxtoguidecodegenerationand 

enhancethestructuralcoherenceofgeneratedcode[19]. 
11 RB Code 

Generation 
TechniquesusingRule-Based(RB)systemstogeneratecodebasedonpredefinedrules 

andpatterns[23],[47]. 
12 EAsforCode 

Generation 
GeneticprogrammingandEvolutionaryAlgorithms(EAs)appliedtocodegeneration 

tasks,optimizingcodegenerationthroughevolutionaryprocesses[38],[48],[49]. 
13 TB Code 

Generation 
Approachesusingtemplatesandpatternstogeneratecodebasedonpredefinedstructures 

andrules[50],[51],[52]. 
14 Frameworks 

(e.g., 
Tensorflow, 

PyTorch) 

Powerful tools andAPIs forbuilding and deploying codegeneration models, enabling 
researchers and developers to use cutting-edge DL techniques [2], [25] 

15 Google Cloud 
AutoML  Code 

[50]. 

AservicethatusesMLtogeneratecodeforvariousprogramminglanguagesand platforms 
[53]. 

 
Advantages and Enhancements Enabled by AI-driven Code Generation 

 
1. Boosted Productivity and Efficiency: AI-powered code generation automates repetitive and time-intensive tasks 
in software development, freeing up developers to focus on higher-level objectives. By swiftly generating code 
snippets, templates, or even entire programs, it significantly reduces development time and effort [18], [25]. 
 
2. Elevated Code Quality: AI models can analyze extensive codebases, discern patterns, and glean best coding 
practices from high-quality existing code. This capability enables them to produce code that aligns with industry 
standards, adheres to coding conventions, and embodies sound software engineering principles. Consequently, the 
generated code exhibits enhanced readability, maintainability, and modularity while being less prone to errors [25], 
[2]. 
 
3. Facilitation of Code Generation from Alternative Representations: AI models adeptly generate code from diverse 
representations, including images, diagrams, or sketches. This empowers developers to visually or graphically 
express their ideas, seamlessly converting them into executable code. Such capability fosters low-code or no-code 
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development paradigms and empowers individuals with limited coding skills to craft functional applications [54], 
[55]. 
 
4. Code Completion and Autocompletion: AI models trained on extensive code repositories offer intelligent code 
completion suggestions based on context. They predict subsequent lines of code, propose suitable function calls, 
recommend variable names, and furnish valuable documentation. This feature expedites the coding process and 
minimizes the likelihood of syntactic or logical errors [25], [43]. 
 
5. Support for Code Refactoring: AI models facilitate code refactoring by proffering automatic suggestions for 
improvements or generating refactored code snippets. This aids developers in enhancing the structure, organization, 
and performance of existing codebases [2]. 
 
6. Harnessing Transfer Learning and Knowledge Sharing: AI models trained on vast codebases assimilate the 
knowledge and expertise ingrained within the code [31]. 
 
7. Continuous Learning and Enhancement: AI models can undergo continuous training on fresh code repositories, 
assimilating the latest coding practices and trends [6], [56]. 
 
8. Bridging the Gap between Natural Language (NL) and Code: AI models adeptly comprehend NL descriptions of 
software requirements or functionalities and subsequently generate corresponding code [27], [10]. 
 

Application Benefits Impact LessonsLearned 
Amazon 

CodeWhisperer[26
] 

- Context-aware 
code completion 
and bug detection 

- Improved coding 
efficiency 

-AI-poweredcodingcompanionscan 
enhance developer productivity 

AutomaticHTML 
Code Generation 

[57]][9] 

-Fasterfront-end 
development 

-Reducedmanualcoding 
efforts 

-AITcanautomaterepetitiveandtime- 
consuming tasks in web development 

MobileApplication 
Development [55] 

-Simplifiedmobile 
app development 

-Reducedprogramming 
efforts 

-AI-basedcodegenerationfromsketches
 can facilitate rapid 

prototypinganddevelopmentofmobile 
applications 

Function Block 
Applications [37] 

- Automatic 
generation of 
function block 

applications 

- Faster and more 
efficient 

developmentinautomatio
n 

- Evolutionaryalgorithms can optimize 
industrial automation systems 

Source Code 
Modeling and 

Generation [43] 

-ACGbasedon 
learned patterns 

-Improvedcodequality 
and consistency 

-DLmodelscancapturecomplex patterns 
and structures in source code 

Natural Language 
toCodeGeneration 
[58] 

- Translation of 
natural language 
descriptionsinto 

code. 

- Enables non- 
programmers to 
express intentions in 
code 

- NLP techniques can bridge the gap 
between human language and 
programming languages. 

 
 
 
 

Addressing the Challenges, Constraints, and Ethical Considerations 
 
The integration of Artificial Code Generation (ACG) with Artificial Intelligence Technologies (AITs) has recently 
attracted significant attention due to its potential to enhance productivity and efficiency in software development. 
However, this promising approach is not without its challenges and limitations. This section explores some of the 
key hurdles and ethical considerations associated with ACG and AITs. 
 
1. Inadequate Training Data: A major obstacle in AI-based code generation is the scarcity of high-quality training 
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data. ML models rely on extensive and diverse datasets to effectively learn patterns within the target problem 
domain. Yet, acquiring such datasets for code generation tasks is often hindered by factors like proprietary 
codebases or limited access to labeled examples. 
 
2. Lack of Contextual Understanding: AI models may struggle to grasp the context and requirements of code 
generation tasks, particularly when faced with intricate or domain-specific scenarios. This difficulty in capturing the 
nuances of programming languages, frameworks, and libraries can result in subpar code generation outcomes. 
 
3. Insufficient Training Data Availability: The availability of training data poses a significant challenge in code 
generation endeavors. Creating comprehensive and diverse training datasets that encompass various programming 
languages, frameworks, and coding styles remains a formidable task. 
 
4. Handling Ambiguities: Code generation tasks frequently entail navigating ambiguous or incomplete 
specifications, posing a challenge for AI models to produce accurate and desired code. Ambiguities in natural 
language descriptions or incomplete requirements can lead to code that fails to meet intended functionality. 
 
5. Scalability and Performance Concerns: Scaling AI models for large-scale code generation can incur substantial 
computational expenses and time investments. Generating complex codebases or working with extensive code 
repositories may strain computational resources and efficiency. 
 
6. Overfitting and Generalization Issues: AI models trained for code generation are susceptible to overfitting, where 
they memorize specific patterns from the training data but struggle to generalize to unseen examples. Striking a 
balance between capturing common patterns and promoting generalization is pivotal in fostering robust and 
adaptable code generation systems. 
 
7. Maintenance and Adaptation Challenges: Code generation models must continually adapt to evolving 
programming languages, libraries, and frameworks. Maintaining and updating these models to accommodate new 
features and coding practices demands considerable time and resources. 
 
8. Flexibility versus Guided Generation: Achieving a balance between generating code that fulfills specific 
requirements while allowing room for developer customization is a delicate endeavor. AI models need to offer 
customization options without overwhelming developers with an excessive array of choices. 
 
9. Trust and Safety Concerns: Ensuring the trustworthiness and safety of generated code is paramount as AI models 
increasingly automate code generation processes. Addressing issues such as bias, security vulnerabilities, and 
unintended consequences is crucial in fostering trust in AI-generated code. 
 
10. Adoption and Acceptance Challenges: Widely adopting AIT for ACG may encounter resistance and skepticism 
from developers and industry stakeholders. Building trust, showcasing value, and mitigating concerns regarding job 
displacement and loss of control are pivotal in facilitating the adoption of AIT in code generation. 
 
11. Code Complexity and Variability: Codebases exhibit high complexity and considerable variability across 
projects and programming languages, posing challenges for AIT in code generation. Grappling with the intricacies 
of code syntax, semantics, and idiomatic patterns complicates the generation of accurate and high-quality code. 
 
12. Capturing Context and Intent: Understanding the context and intent of code generation tasks is crucial for 
producing meaningful code. However, AI models may struggle to glean complete context and accurately interpret 
developer intent from limited information, exacerbating challenges in the code generation process. 
 
13. Limited Support for Domain-Specific Languages and Libraries: AIT for code generation predominantly focuses 
on popular programming languages and libraries, neglecting domain-specific languages or libraries with limited 
available training data. Adapting AI models to support specialized domains presents challenges due to resource 
constraints and specialized knowledge requirements. 
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14. Debugging and Maintenance Complexity: Generated code may contain bugs, logical errors, or performance 
inefficiencies, posing challenges for debugging and maintenance. Addressing these issues raises concerns about the 
reliability and maintainability of AI-generated code. 
 
In navigating these challenges and ethical considerations, it is imperative to foster ongoing research, collaboration, 
and responsible deployment of AIT in code generation to realize its full potential while mitigating associated risks. 
 

Exploring Ethical Considerations 
 
The integration of Artificial Intelligence Technologies (AIT) in Artificial Code Generation (ACG) brings to light 
various ethical and legal concerns, especially in scenarios involving code utilized in safety-critical systems or 
handling sensitive data. Ensuring that the generated code aligns with security, privacy, and ethical standards poses 
substantial challenges and necessitates meticulous validation and verification processes. AI-generated code 
introduces ethical considerations, biases, and potential risks that must be addressed to uphold responsible and safe 
usage. Here are key aspects to ponder: 
 
1. Bias and Fairness: AI models trained on biased or limited datasets may produce code reflecting those biases, 
perpetuating inequalities. Mitigating bias during training by incorporating diverse and representative datasets is 
crucial to fostering fairness and inclusivity. 
 
2. Reliability and Accountability: AI-generated code may harbor errors or unintended consequences, emphasizing 
the importance of rigorous verification and testing to ensure correctness, robustness, and safety. Developers and 
users must acknowledge the limitations of AI-generated code and assume responsibility for its outcomes. 
 
3. Privacy and Security: Given that AI models used for code generation may handle sensitive or proprietary data, 
safeguarding data privacy and ensuring secure code generation are paramount. Implementing stringent security 
measures is essential to prevent unauthorized access and misuse of AI-generated code. 
 
4. Transparency and Explainability: The opaque nature of AI models used in code generation poses challenges in 
understanding their decision-making processes. Enhancing transparency and explainability in AI systems is vital for 
building trust and facilitating effective auditing, debugging, and compliance with legal and ethical standards. 
 
5. Intellectual Property and Copyright: Concerns regarding intellectual property and copyright may arise with AI-
generated code. Developers must ensure that generated code adheres to legal and licensing requirements while 
respecting intellectual property rights. 
 
6. Unemployment and Job Displacement: The automation of software development through AI-generated code has 
implications for employment in the software engineering field. While AI can enhance developers' capabilities, 
efforts should be made to reskill and upskill individuals to mitigate potential job displacement and address the 
evolving employment landscape. 
 
7. Human Oversight and Control: AI-generated code should complement rather than replace human decision-
making. Maintaining human oversight and control over the generated code is essential to ensure alignment with 
ethical and legal standards. Human intervention is necessary for reviewing, validating, and modifying the generated 
code as necessary. 
 
Managing these ethical considerations, biases, and potential risks associated with the use of AIT for ACG is crucial 
to promoting responsible and ethical practices in software development. Table 4 provides a summary of the main 
ethical considerations, biases, and potential risks related to utilizing AIT for ACG, emphasizing the importance of 
careful management to ensure ethical and responsible ACG implementation. 
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Concluding Remarks 
 
In this study, we delved into various Artificial Intelligence Technologies (AITs) utilized for Artificial Code 
Generation (ACG) in software development, offering comparisons between traditional and AI-driven approaches 
while exploring the integration of AI techniques in code generation. Our analysis highlighted the strengths and 
limitations of different AITs, encompassing Rule-Based (RB) systems, Machine Learning (ML), and Deep Learning 
(DL). 
 
These techniques have showcased significant advancements in code generation, contributing to enhanced efficiency 
and code quality. We examined their relevance and adaptability across diverse code generation tasks, presenting 
recent innovations and real-world applications that underscore their efficacy. Additionally, we scrutinized 
commonly used evaluation metrics for assessing the performance of AI-based code generation systems. 
 
However, despite the promise they hold, AI techniques for code generation present challenges and limitations. 
Issues such as data requirements and availability for training AI models, scalability, efficiency, and the 
interpretability of AI-generated code demand attention and resolution. 
 
These considerations will play a pivotal role in shaping the adoption and integration of AI techniques in practical 
software development contexts. Our comparative analysis offers insights into the strengths and weaknesses of each 
AI technique, empowering researchers and practitioners to make informed decisions tailored to specific 
requirements and constraints. 
 
The implications of AI-based code generation in software development are profound. By automating tedious and 
repetitive code generation tasks, developers can allocate more time to higher-level design and critical problem-
solving activities. This, in turn, can yield heightened productivity, accelerated software development cycles, and 
elevated software quality. 
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