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Abstract 

This paper explores the paradigm of AI-powered self-healing systems within the context of fault-tolerant platform engineering. 

As systems become increasingly complex, the ability to autonomously detect and address faults is paramount for ensuring 

continuous operation and reliability. Through a series of case studies, this research examines the application of AI techniques 

such as machine learning and neural networks in creating self-healing mechanisms. Challenges such as scalability, adaptability, 

and robustness are analyzed alongside practical implementations. The findings contribute to advancing the understanding of 

AI's role in enhancing fault tolerance and resilience in engineering platforms. 
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Introduction 

In the realm of modern computing, the pursuit of fault tolerance and system reliability stands as a cornerstone of 

engineering practice. As systems grow in complexity and scale, the occurrence of faults becomes an inevitable 

reality, posing significant challenges to maintaining uninterrupted operations. In response to this imperative, the 

concept of self-healing systems powered by artificial intelligence (AI) has emerged as a promising avenue for 

addressing faults autonomously. 

https://doi.org/10.60087/jklst.vol2.n2.
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This paper delves into the domain of AI-powered self-healing systems within the context of fault-tolerant platform 

engineering. It investigates how advancements in AI, particularly in machine learning and neural networks, are 

leveraged to imbue systems with the capability to detect, diagnose, and rectify faults without human intervention. 

Through a series of case studies and analyses, we examine the practical implementations of such systems across 

various domains, highlighting their effectiveness and limitations. 

 

The importance of fault tolerance cannot be overstated, especially in critical applications such as cloud computing, 

autonomous vehicles, and industrial automation. A single fault has the potential to cascade into system-wide 

failures, leading to service disruptions, financial losses, or even safety hazards. Traditional fault recovery 

mechanisms, while effective to some extent, often fall short in addressing faults promptly or adapting to dynamic 

operational conditions. 

 

In contrast, AI-powered self-healing systems offer a paradigm shift by endowing platforms with proactive fault 

mitigation capabilities. By continuously monitoring system behavior, analyzing data patterns, and learning from 

past incidents, these systems can anticipate and respond to faults in real-time, thus minimizing downtime and 

maximizing reliability. However, the deployment of such systems brings forth a host of challenges, including 

scalability, adaptability to diverse environments, and ensuring robustness against adversarial attacks or unforeseen 

scenarios. 

 

Through this exploration, we aim to shed light on the transformative potential of AI in bolstering fault tolerance 

within engineering platforms. By understanding the underlying principles, methodologies, and challenges 

associated with AI-powered self-healing systems, engineers and researchers can chart a path towards more resilient 

and dependable computing infrastructures. 

 

Objectives: 
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Objective 1: Investigate the Effectiveness of AI-Powered Self-Healing Systems 

- Evaluate the performance of AI algorithms, including machine learning and neural networks, in autonomously 

detecting and addressing faults within engineering platforms. 

- Analyze the impact of AI-powered self-healing systems on fault tolerance, uptime, and system reliability across 

different case studies and scenarios. 

- Assess the efficacy of self-learning mechanisms embedded within these systems for continuously improving fault 

detection and mitigation capabilities over time. 

 

Objective 2: Identify Challenges and Limitations in Implementing AI-Powered Self-Healing Systems 

- Identify key challenges such as scalability, adaptability to diverse environments, and robustness against adversarial 

attacks or unforeseen anomalies. 

- Investigate the potential risks associated with relying on AI algorithms for critical fault detection and recovery 

processes. 

- Explore the practical constraints and resource requirements involved in deploying and maintaining AI-powered 

self-healing systems within engineering platforms. 

 

Objective 3: Propose Strategies for Enhancing the Deployment and Efficacy of AI-Powered Self-Healing Systems 

- Develop guidelines and best practices for integrating AI-powered self-healing mechanisms into existing fault-

tolerant platform architectures. 

- Explore strategies for mitigating the challenges identified in Objective 2, such as developing adaptive algorithms, 

incorporating redundancy, and ensuring interoperability with existing system components. 

- Investigate avenues for enhancing the transparency, interpretability, and accountability of AI algorithms used in 

self-healing systems to foster trust and acceptance among stakeholders. 

 

AI-powered self-healing systems are being studied for fault-tolerant platform engineering. These systems aim to 

detect and repair flaws or failures in hardware and decentralized networks. They offer better fault-tolerance 

capabilities and can improve the self-healing of large-scale decentralized systems [1] [2]. However, there are 

challenges in implementing self-healing systems, such as area overhead and scalability for complicated 

structures [3]. Additionally, the rise of the Internet of Things (IoT) and the need for autonomous IoT infrastructure 

has highlighted the importance of self-healing techniques in solving issues and ensuring reliability and resilience [4]. 

Evaluating the correct behavior of self-healing systems is also a challenge, and the use of chaos engineering has 

shown promise in assessing their resilience and fault-tolerance [5]. Overall, self-healing systems powered by AI have 
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the potential to improve fault tolerance in various domains, but there are still challenges and areas for further 

research and development. 

 

 

Methodology 

1. Case Study Selection: 

   - Identify a diverse range of case studies spanning various domains, including cloud computing, IoT, 

telecommunications, and industrial automation. 

   - Ensure that selected case studies exhibit different levels of complexity, fault types, and operational environments 

to provide a comprehensive understanding of AI-powered self-healing systems' efficacy. 

 

2. Data Collection: 

   - Gather relevant data sources, including system logs, sensor readings, fault reports, and performance metrics, 

from the selected case studies. 

   - Ensure the quality and integrity of the data through preprocessing techniques such as cleaning, normalization, 

and feature extraction. 

 

3. AI Algorithm Selection and Implementation: 

   - Evaluate a range of AI algorithms suitable for fault detection, diagnosis, and recovery tasks, including machine 

learning models (e.g., decision trees, support vector machines, neural networks) and anomaly detection techniques. 

   - Implement selected AI algorithms using appropriate programming languages and libraries (e.g., Python, 

TensorFlow, scikit-learn) for training and inference tasks. 

 

4. Model Training and Evaluation: 

   - Partition the collected data into training, validation, and test sets for model development and evaluation. 

   - Train AI models using the training data, optimizing hyperparameters and model architectures to maximize 

performance metrics such as accuracy, precision, recall, and F1-score. 

   - Validate trained models using the validation set to assess generalization capabilities and fine-tune as necessary. 

   - Evaluate the performance of trained models using the test set, measuring their effectiveness in detecting and 

mitigating faults while considering factors such as false positives, false negatives, and response time. 

 

5. Implementation of Self-Healing Mechanisms: 

   - Integrate the trained AI models into self-healing mechanisms within the engineering platforms of the selected 

case studies. 

   - Develop algorithms and protocols for real-time monitoring, fault detection, root cause analysis, and automated 

recovery actions based on AI model predictions. 

   - Validate the functionality and robustness of self-healing mechanisms through simulation or deployment in 

controlled environments, ensuring compatibility with existing fault-tolerant strategies and operational workflows. 

 

6. Performance Evaluation and Validation: 

   - Deploy AI-powered self-healing systems in real-world or simulated environments within the selected case 

studies. 

   - Monitor system behavior and performance metrics before, during, and after the deployment of self-healing 

mechanisms to assess their impact on fault tolerance, uptime, and reliability. 

   - Collect feedback from system operators, maintenance personnel, and end-users regarding the effectiveness, 

usability, and trustworthiness of AI-powered self-healing systems. 

 

7. Analysis and Iterative Improvement: 

   - Analyze the results of performance evaluations and user feedback to identify strengths, weaknesses, and areas 

for improvement in AI-powered self-healing systems. 

   - Iterate on the methodology, algorithm selection, implementation strategies, and system configurations to address 

identified challenges and enhance overall effectiveness. 

   - Document insights, lessons learned, and recommendations for future research and practical deployment of AI-

powered self-healing systems in fault-tolerant platform engineering. 
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Background: 
 

 

The electronic circuit industry is witnessing rapid expansion with the introduction of new devices and equipment 

designs, leading to increasingly complex systems. However, the occurrence of hardware failures during continuous 

operations due to factors like heating, aging, or extreme environmental conditions poses significant challenges to 

system reliability. In such scenarios, self-healing emerges as a crucial strategy for ensuring the dependability of 

electronic systems, particularly those operating in harsh conditions such as space applications, characterized by high 

radiation and extreme temperatures. 

 

Self-healing mechanisms encompass various approaches, many of which are based on redundancy principles 

involving the detection and replacement of faulty cells within the system. These mechanisms aim to restore the 

functionality of the system and maintain its operation for the longest possible duration. One prominent method at 

the circuit level involves circuit replication, where a defective cell is replaced by a spare one following the detection 

of the fault by the control unit. Self-healing can be implemented at different levels within systems, including 

application-level, system-level, and hardware-level healing processes. 

 

Several techniques exist for self-healing, including Dual Measured Redundancy (DMR), Triple Modular 

Redundancy (TMR), and Embryonic Hardware (EmHW) systems, each with its unique approach to fault tolerance. 

DMR and TMR employ redundancy to ensure fault detection and recovery, while EmHW draws inspiration from 

biological entities' self-repair mechanisms, replicating small structure blocks within the hardware architecture. 

 

However, existing self-healing methods often suffer from drawbacks such as increased area and power consumption 

due to the need for redundant hardware components. EmHW addresses these limitations by leveraging the self-

healing principles observed in multicellular organisms, employing a two-dimensional array of electronic cells (e-

cells) with reconfiguration capabilities. 

 

E-cells exhibit adaptive self-healing capabilities inherent to their homogeneous structure, wherein each cell is 

capable of performing a specific set of functions determined by configuration data. In the event of a cell failure, the 

self-diagnosis module triggers a self-healing process, replacing the faulty cell with a spare one. The architecture of 

an e-cell comprises various modules including I/O, address, configuration, control, function, and status detection 

modules, each contributing to the overall self-healing process. 

 

In this paper, we explore the concept of self-healing systems in electronic circuits, focusing on the EmHW approach 

and its potential to enhance fault tolerance and reliability in hardware systems. Through analysis and discussion, we 

aim to shed light on the benefits and challenges associated with implementing self-healing mechanisms and propose 

strategies for advancing the field of fault-tolerant platform engineering. 
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Self-healing is not only crucial for ensuring reliability but also stands as a fundamental aspect of intelligent systems 

[10]. Drawing inspiration from hardware intelligence paradigms, other self-healing approaches include evolvable 

hardware, wherein a system evolves from an initial state with errors or low fitness until it finds a workaround for 

defective cells through cell shuffling using genetic programming. Another strategy involves an online 

reconfiguration process allowing the system to discover a new optimized configuration whenever an issue is 

detected. These systems rely on uniform architectures such as Field-Programmable Gate Arrays (FPGAs) or Genetic 

Programming units [11]. 

 

The subsequent sections of this paper are organized as follows. Section II introduces proposed self-healing 

techniques. Section III presents evaluation criteria for the proposed methods. Implementation and analysis results 

are provided in Sections IV, followed by the conclusion in Section V. 

 

 

 

The majority of existing self-healing approaches rely on redundancy by incorporating spare cells. In the event of a 

failure, these spare cells replace the faulty ones after the detection of deficiencies. However, alongside the noted 

area overhead and flexibility, the placement of spare cells may introduce setback overhead post self-healing, as the 

nearest spare cell is often located far away from the faulty one. While adding more spare cells may improve system 

performance and planning, it also leads to increased area overhead. Conversely, reducing the number of spare cells 

to minimize area overhead poses significant challenges in system design, resulting in a more complex healing 

system with an increasing number of faults over time, potentially leading to system-wide failure or delays. 

 

To address these challenges and enhance system performance without introducing additional spare cells, a novel 

approach is proposed. This approach considers every cell as a potential spare cell for its neighbor, allowing each 

cell to fulfill both its own task and that of its neighboring cell. The proposed method utilizes time-division 

multiplexing for self-healing, enabling each cell to execute two tasks within the same clock cycle when a fault 

occurs. 

 

Operationally, one task runs during the first half of the clock cycle, while the second task runs during the latter half. 

If an issue is detected in a cell, its neighbor receives a control signal from the controller instructing it to execute the 

task of the faulty cell in addition to its own. This approach minimizes area overhead significantly compared to 

previous methods. The design complexity is akin to having an additional cell placed between every two neighboring 

cells, which is a feasible arrangement for planning purposes. 

 

The operational flow of the proposed technique is as follows: Upon detection of a fault in a cell, the neighboring 

cell receives a control signal from the controller to execute the task of the faulty cell. The active cell dynamically 

splits its runtime between its original task and the task of the faulty cell using a dual-edge-triggered (DET) cell. 

Consequently, during the first half of the clock cycle, the active cell executes its original task, while during the 

second half, it executes the task of the faulty cell. Figure 2 illustrates the cell architecture of the proposed approach. 
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The DET cell has two input sources, with the selection between them determined by the control signal (C) and clock 

(clk) value. When a fault occurs, the detection block identifies the faulty area, prompting the control block to raise 

the signal C for this specific area. Consequently, the DET cell outputs normal data (I1) when the clk value rises and 

selects the input of the faulty cell (I2) when the clk value drops, as depicted in Figure 3. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 illustrates a simple cluster to illustrate the concept. Suppose there is a fault in cell 1; according to the 
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location block, it sends a signal to the neighbors to check their activation and select one of them. Now, cell 2 will 

compensate for the faulty cell 1, and control signal C1 will be set to one. Cell 2 has two input sources applied to 

DET's input, one from the normal data and the second which should go to the input of cell 1. The decision input of 

DET selects one input to enter cell 2 depending on the clock value. Cell 2 assumes the task of cell 1 such that when 

cell 2 receives a control signal C1, it selects the task of cell 1 from the configuration module to be executed. For the 

negative value of the clock and whether C1 equals 1 or 0, the DET block selects inp2 and executes a function of 

cell 2. During the positive value of the clock and C1 equals 1, the DET selects inp1 and executes a function of cell 

1. Additionally, the output of cell 2 during the cycle time of cell 1's task is fed to cell 3. The same process occurs 

for any cell, where typically each cell has the same set of functions to be configured. Thus, instead of adding spare 

cells and increasing area overhead, self-healing is performed on the system using the dynamic cells themselves. If 

there are multiple faults, another dynamic cell will correct faults, as shown in Figure 5. Figure 5 demonstrates faults 

in cell 2 and cell 9, and after self-healing association, cell 6 will execute the task of cell 6 and the task of cell 2. 

Furthermore, cell 13 will execute the task of cell 13 and the faulty cell 9. The scenario overview is depicted in 

Figure 6, where for normal operation, out1 is A and out2 is B. In the case of a faulty cell 1, the fault signal will rise 

to one, and cell 2 will execute the tasks of two cells, as shown in Figure 6. Out1 is Z (floating), and out2 is the 

output of its task (B) and the output task of the faulty cell (A). 

 

The throughput of the system depends on the clock operation of the system. For the system that relies on full-cycle 

multiplexing, where only one function operates for each cycle, throughput will reduce to half. However, the 

proposed method keeps the cell that runs two tasks (its original task and the faulty cell's task) to operate at double 

the speed of normal operation. This cell will complete two tasks within one clock cycle. Thus, the proposed approach 

maintains the same throughput with self-healing. This type of self-healing belongs to the architectural level of 

intelligent hardware stack [10], where monitoring occurs at the level of e-cells, and the controller decides to replace 

a faulty cell with one of the available nearby cells in a multiplexing pattern, as explained. The reconfigurable fabric 

here is equivalent to an EmHW-based architecture. This can be further extended to use Genetic Programming units 

and evolutionary techniques for dynamic improvement of self-healing. 

 

Evaluation Indices for Proposed Embryonic Self-Healing 
 

Assessment Criteria for Proposed Embryonic Self-Healing 

 

An assessment framework [12] for self-healing establishes a framework for evaluating self-healing processes, 

analyzing, and comparing different self-healing methodologies. The evaluation criteria covered in this paper include 

redundancy rate, maximum number of fixes, and self-healing time consumption. 

 

A. Redundancy Rate 

The redundancy rate represents the ratio of the number of spare cells to the number of active cells in the embryonic 

cluster. The designer of the embryonic cluster aims to ensure that the number of spare cells in the full array of 

hardware resources is minimized while ensuring the system's self-healing capability is maximized. The proposed 

approach designates every cell as a spare cell for its neighbor, resulting in a redundancy rate of fifty percent without 

the addition of spare cells. 

 

B. Maximum Number of Fixes 

The maximum number of fixes refers to the maximum number of issue resolutions that can be autonomously 

addressed by the self-healing mechanism in the embryonic cluster to restore the system to its normal operating state. 

For the proposed method, the maximum number of fixes is half of the total number of cells in the embryonic cluster. 

 

C. Self-Healing Time Consumption 

Self-healing time consumption denotes the time elapsed from the failure of a cell to the resolution of the issue, 

restoring the system back to normal operation. Therefore, the repair speed is a crucial aspect in the fault-fixing 

phase. The proposed method relies on neighbor-based fixing, which simplifies the design and incurs minimal delay 

compared to traditional redundancy-based self-healing methods. 

 

The proposed approach relies on neighbor-based fixing, simplifying the design and minimizing routing delays 

compared to other redundancy methods for self-healing. These features make the proposed approach an appealing 
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strategy for self-healing. 

 

 
 

 

Implementation 
 

The proposed approach relies on neighbor-based repairing, simplifying the mapping process and eliminating the 

need for routing delays compared to other redundancy techniques for self-healing. These characteristics render the 

proposed approach an appealing choice for self-healing. 

 

A. First Case Study: ALU Array 

The modules are implemented using VHDL, and simulation results are obtained using ISE Xilinx 14.4 on Vertex 5. 

Each cell comprises an Arithmetic Logic Unit (ALU) operation, and each cell is assigned a specific task determined 

by the configuration block, as shown in Figure 1. Additionally, each cell incorporates an ALU block operation and 

a Read-Only Memory (ROM) to store the configuration of operations. In the event of a fault in any block, the 

neighboring cell compensates for this fault using the self-healing approach and configuration of each block. 

 

B. Second Case Study: Neural Network 

An Artificial Neural Network consists of a collection of nodes (neurons), where each connection between nodes can 

transmit a signal from one to another, as depicted in Figure 8. Each input is multiplied by a weight and then sent to 

the equivalent of a cell body. Using an adder, the weighted signals are summed together to provide node activation 

or an activation function [13], [14]. If the activation function exceeds the threshold, the unit outputs a high value; 

otherwise, it outputs a low value. The output of each neuron is calculated by: 

 

 

 

 

 

Where \( X_j \) represents the output of the \( j \)th neuron in the preceding layer, \( n \) is the number of neurons, 

\( W_{ji} \) denotes the synaptic weight from the \( j \)th neuron to the \( i \)th neuron in the succeeding layer, \( f 

\) represents the activation function, and \( b \) is the bias. 

 

The self-healing approach provides healing to any faulty node in the Neural Network (NN). If a node experiences a 

fault, the neighboring node will execute two functions: its own function and the function of the faulty node. We 

implemented the NN with an input layer consisting of three nodes, three hidden layers with four nodes in each layer, 

and an output layer with one node. This NN is utilized for classification between two different classes. The NN is 

implemented using VHDL, and simulation results are obtained using ISE Xilinx 14.4 on Vertex 5. 

 

C. Reliability 

Reliability is one of the crucial indicators for a system. It refers to the ability of the system to perform its function 

within a specified period of time. In this paper, reliability analysis is considered, building upon previous works on 

reliability [15], [16]. The probability of success for the system is represented by: 
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\[ p(t) = \exp(-\lambda t) \] 

 

Where all units are assumed to be identical, \( p(t) \) follows an exponential distribution failure, and \( \lambda \) 

denotes the failure rate. Each cell can execute two functions within the same clock period in the case of a neighboring 

faulty cell. Thus, the reliability of the system is given by: 

 

 

 

 

Algorithm 

 

This section outlines the step-by-step implementation process to achieve the desired output. 

 

A. Open ISE. 

B. Click on "New File" and select "New Project." 

C. Provide a name for the new project file and click "Next," then "Finish." 

D. After naming the project, the corresponding file is created. Right-click on this file and select "Copy." 

E. Select the path for the code files and open all files. 

F. All selected code files will be displayed in the ISE navigator. 

G. Select "Implementation." 

H. Choose the code and set it as the top module of the code, then check the syntax. 

I. Once the syntax check is complete, move to the RTL schematic. Upon completion, the RTL schematic will open. 

J. After the implementation phase, proceed to simulation. 

K. In the simulation, select the test bench of the code and click on "Behavioral Model." 

L. Once the simulation is complete, proceed to simulate the behavioral model. Upon completion, the output window 

will appear. 

 

Conclusions 
 

In this study, we introduced a novel technique aimed at reducing power loss during at-speed testing of sequential 

circuits with scan-based Logic Built-in Self-Test (LBIST) utilizing the "Lunch on Capture" scheme. The proposed 

solution enables designers to mitigate the likelihood of delay induced by Power Delivery (PD) during at-speed 

testing being incorrectly interpreted as a delay fault, thus avoiding the generation of false test failures. This was 

accomplished by decreasing the Activation Factor (AF) of the Circuit Under Test (CUT) compared to conventional 

scan-based LBIST methods, achieved through appropriate modifications to the test vectors generated by the Linear 

Feedback Shift Register (LFSR). 
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