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Abstract 

Optimizing resource allocation in cloud infrastructure is paramount for ensuring efficient utilization of computing resources and 

minimizing operational costs. With the proliferation of diverse workloads and dynamic user demands, manual resource 

management becomes increasingly challenging. In this context, artificial intelligence (AI) automation emerges as a promising 

approach to enhance resource allocation efficiency. This paper presents a comparative study of various AI techniques applied to 

optimize resource allocation in cloud environments. We explore the efficacy of machine learning, evolutionary algorithms, and 

deep reinforcement learning methods in dynamically allocating resources to meet performance objectives while minimizing costs. 

Through a comprehensive evaluation of these approaches using real-world datasets and simulation experiments, we highlight their 

strengths, limitations, and comparative performance. Our findings provide valuable insights into the effectiveness of AI-driven 

resource allocation strategies, enabling cloud providers and practitioners to make informed decisions for enhancing cloud 

infrastructure management. 
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Introduction 

The advent of cloud computing has revolutionized the way computing resources are provisioned and managed, 
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offering unparalleled scalability, flexibility, and cost-effectiveness. Cloud infrastructure enables users to access a wide 

array of resources on-demand, ranging from computing power and storage to networking capabilities, without the 

need for heavy upfront investments in hardware. However, as the demand for cloud services continues to surge and 

workloads become increasingly diverse and dynamic, efficient resource allocation becomes a critical challenge for 

cloud providers. 

 

Optimizing resource allocation in cloud infrastructure involves dynamically assigning computing resources to various 

tasks and applications to ensure optimal performance and cost efficiency. Traditional approaches to resource allocation 

often rely on static heuristics or manual intervention, which are ill-equipped to handle the complexity and variability 

of modern cloud environments. Moreover, the lack of scalability and adaptability of these approaches hinders their 

effectiveness in meeting evolving user demands. 

 

In response to these challenges, artificial intelligence (AI) techniques have emerged as promising solutions for 

automating and optimizing resource allocation in cloud environments. By leveraging AI algorithms and 

methodologies, such as machine learning, evolutionary algorithms, and deep reinforcement learning, cloud providers 

can develop intelligent systems capable of autonomously managing resource allocation tasks with minimal human 

intervention. 

 

This paper aims to investigate the role of AI automation in optimizing resource allocation in cloud infrastructure 

through a comparative study of different approaches. We examine the efficacy of machine learning algorithms, 

evolutionary algorithms, and deep reinforcement learning techniques in dynamically allocating resources to meet 

performance objectives while minimizing operational costs. By conducting a comprehensive evaluation of these 

approaches using real-world datasets and simulation experiments, we seek to provide insights into their strengths, 

limitations, and comparative performance. 

 

Through this research, we aim to contribute to the advancement of AI-driven resource allocation strategies in cloud 

computing, enabling cloud providers and practitioners to make informed decisions for enhancing the efficiency and 

effectiveness of cloud infrastructure management.  
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Objectives: 

 

Objective 1: Evaluate the effectiveness of machine learning algorithms, evolutionary algorithms, and deep 

reinforcement learning techniques in optimizing resource allocation within cloud infrastructure. 

 

Objective 2: Assess the performance of AI-driven resource allocation strategies in meeting varying performance 

objectives such as response time, throughput, and resource utilization while minimizing operational costs. 

 

Objective 3: Conduct a comparative analysis of different AI automation approaches to identify their strengths, 

limitations, and suitability for specific cloud computing environments and workload characteristics. 

 

Literature Review 

Cloud computing is a rapidly evolving field that requires efficient resource allocation to optimize performance and 

reduce costs. Several studies have proposed different methods for optimizing resource allocation in cloud 

infrastructure. Arvindhan and Kumar proposed a deep reinforcement learning-based actor-critic method that 

outperforms existing allocation methods in terms of resource utilization, energy efficiency, and overall cost [1]. George 

introduced an optimized task scheduled resource allocation model using a combination of Sen's multi-objective 

functions and auto-encoder deep neural network-based method, which significantly improves task scheduling 

efficiency, reduces energy usage, and makespan [2]. Funika, Koperek, and Kitowski used reinforcement learning and 

deep learning techniques to automate the scaling of heterogeneous resources in a compute cloud environment, 

resulting in cost optimization and improved performance [3]. Shi, Lingareddy, Suo, and Nguyen proposed the MinPlus 

algorithm for task scheduling, which demonstrated decreased turnaround time, enhanced resource load balancing, and 

increased throughput [4]. These studies provide valuable insights into the use of AI automation for optimizing resource 

allocation in cloud infrastructure. 

Methodology 

 

1. Data Collection: Gather real-world datasets representing various cloud workloads, including information on 
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resource usage patterns, application characteristics, and performance metrics. Additionally, collect data on cloud 

infrastructure parameters such as available computing resources, network bandwidth, and storage capacity. 

 

2. Algorithm Selection: Choose a set of AI-driven resource allocation algorithms for evaluation, including machine 

learning algorithms (e.g., regression, classification, clustering), evolutionary algorithms (e.g., genetic algorithms, 

particle swarm optimization), and deep reinforcement learning techniques (e.g., deep Q-learning, policy gradients). 

 

3. Experimental Setup: Design experiments to evaluate the performance of selected algorithms in optimizing resource 

allocation within cloud infrastructure. Define performance metrics such as response time, throughput, resource 

utilization, and cost efficiency to assess the effectiveness of each algorithm. 

 

4. Training and Evaluation: Train AI models using the collected datasets and evaluate their performance through cross-

validation or holdout validation techniques. Fine-tune hyper parameters and optimize model architectures to achieve 

optimal performance. 

 

5. Simulation Experiments: Conduct simulation experiments to assess the scalability, robustness, and adaptability of 

AI-driven resource allocation strategies under various workload scenarios and cloud environment configurations. Use 

simulation tools such as Clouds or discrete-event simulators to mimic real-world cloud environments. 

 

6. Comparative Analysis: Compare the performance of different AI algorithms in terms of their ability to meet 

performance objectives while minimizing operational costs. Analyse the strengths, limitations, and trade-offs of each 

approach based on experimental results and observations. 

 

7. Sensitivity Analysis: Perform sensitivity analysis to investigate the impact of changing parameters such as workload 

intensity, resource constraints, and algorithmic parameters on the performance of AI-driven resource allocation 

strategies. 

 

8. Statistical Analysis: Apply statistical techniques to analyse experimental results and determine the significance of 

observed differences between the performances of different algorithms. Conduct hypothesis testing to validate the 

effectiveness of AI automation in optimizing resource allocation in cloud infrastructure. 

 

9. Discussion and Interpretation: Interpret experimental findings and discuss implications for cloud infrastructure 

management. Identify potential challenges, limitations, and future research directions for further improving AI-driven 

resource allocation techniques in cloud computing environments. 

 

 

 

 

Background: 

 
II. Literature Review 

 

Conventional actor-critic methods often suffer from excessive variation and erroneous policy gradients due to the 

linear functional form used to estimate the action-value function. To address this issue, the Advantage Actor-Critic 

was developed, as noted by W. Zhang et al. (2021) and Zhu et al. (2022). In this approach, the actor makes decisions 

based on random chance, while the critic provides feedback in the form of scores, allowing the actor to adjust the 

likelihood of choosing a particular action accordingly. Advantage functions play a significant role in reducing policy 

gradient variance. However, when a neural network approximates the value or policy function, function 

approximation errors may arise, as highlighted by Jin et al. (2023) and D. Zhang et al. (2023). 

 

In the context of radio access network offloading modeled as a Markov Decision Process, a reinforcement learning 

method based on a double-deep Q-network was designed, aiming to combat state-space explosion and dynamically 

discover optimal loading methods, as proposed by the authors. To enhance computational dumping efficiency, a 

deep learning technique based on the State-Action-Reward-State-Action (SARSA) framework was suggested by 

Serrano-Guerrero et al. (2021). Comparative simulation experiments conducted by the authors evaluated various 
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scheduling techniques, including the first-come, first-served (FCFS) algorithm and a genetic algorithm (GA). 

Results indicate that the proposed method surpasses competing algorithms in terms of makespan (total execution 

time) and resource utilization. 

 

Function approximation errors pose challenges to actor-critic methods, particularly in high-dimensional or 

continuous action spaces, as discussed by Niu et al. (2021), Sankalp et al. (2022), and Tang et al. (2023). To mitigate 

this issue, an algorithm named Twin Delayed Deep Deterministic (TD3) policy gradient is proposed, incorporating 

three essential modifications to enhance function approximation accuracy.  

 

The literature also discusses actor-critic deep reinforcement learning algorithms, comprising an actor suggesting 

resource allocation decisions and a critic evaluating their quality. These components, implemented as neural 

networks, are trained using a combination of supervised and reinforcement learning techniques (Ferratti et al., 2021). 

 

Evaluation of the algorithm in a simulated cloud data center environment reveals its superiority over traditional 

resource allocation algorithms in terms of resource utilization and workload completion time. This suggests that the 

proposed approach has the potential to enhance the efficiency and adaptability of resource allocation in cloud data 

centers (Fernandez-Gauna et al., 2022; Sun et al., 2019). 

 

 

In the realm of cloud computing, load balancing has emerged as a crucial aspect, driving the exploration and 

implementation of reinforcement learning (RL) algorithms. These RL algorithms offer versatile solutions to the 

dynamic challenges inherent in load balancing within cloud environments. Here, we present notable examples of RL 

algorithms that have been successfully applied to address this problem. 

 

Firstly, Q-Learning stands out as a model-free RL algorithm adept at learning an optimal action-value function through 

iterative updates of Q-values, guided by rewards received from different states and actions. Its application in dynamic 

load balancing scenarios within cloud computing has been documented (Li et al., 2023). 

 

Deep Reinforcement Learning represents a sophisticated integration of RL with deep neural networks, facilitating the 

acquisition of complex policies. Within cloud computing, this amalgamation has been leveraged to optimize the 

allocation of virtual machines to physical servers, thereby enhancing overall resource utilization. 

 

Actor-Critic Methods, another category of RL algorithms, offer a hybrid approach by combining value-based methods, 

such as Q-learning, with policy-based methods like policy gradient methods. This amalgamation enables the learning 

of policies while simultaneously estimating their values, proving beneficial in optimizing virtual machine allocation 

and mitigating energy consumption in cloud environments. 

 

Furthermore, priority-based scheduling strategies have been employed, wherein tasks are assigned priorities based on 

their attributes such as resource requirements and expected duration. While this approach demonstrates simplicity and 

efficiency, its optimality is context-dependent. 

 

Genetic algorithms offer a distinct paradigm by employing evolutionary principles to evolve schedules that optimize 

specific objective functions, such as maximizing resource utilization and minimizing job wait times (Liao et al., 2023). 

Despite their effectiveness in tackling complex scheduling problems, genetic algorithms may necessitate a substantial 

number of iterations to converge to an optimal solution, as evidenced by prior studies (Tang et al., 2023; Al-Habob et 

al., 2020; Wang, Zhang, Liu, Zhao, et al., 2022a). 

 
Algorithm Type Characteristics 

Multilayer 

Perceptron 

(MLP) 

Feedforward 

Neural 

Network 

It uses backpropagation to train multiple layers of neurons for classification or regression tasks. 

Convolutional 

Neural Network 

(CNN) 

Feedforward 

Neural 

Network 

It uses convolutional layers to extract spatial features from images, often used for 

image classification tasks. 
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Recurrent Neural 

Network (RNN) 

Recurrent 

Neural 

Network 

It uses feedback connections to maintain a "memory" of previous inputs and make 

predictions based on sequence data, often used for natural language processing tasks. 

Long Short-Term 

Memory 

(LSTM) 

Recurrent 

Neural 

Network 

A type of RNN that includes a gating mechanism to selectively remember or forget previous 

inputs, often used for time series prediction and natural language processing tasks. 

Autoencoder Unsupervise

d 

Learning 

It uses a neural network to compress and reconstruct input data, often used for 

dimensionality 

reduction and anomaly detection. 

Generative 

Adversarial 

Network 

(GAN) 

Unsupervise

d Learning 

It uses two neural networks to generate synthetic data indistinguishable from accurate data, 

often used for image and text generation. 

Deep Belief 

Network (DBN) 

Unsupervise

d 

Learning 

They comprise multiple layers of restricted Boltzmann machines (RBMs), used for 

unsupervised 

feature learning and generative tasks. 

Reinforcement 

Learning 

Reinforceme

nt 

Learning 

It uses trial-and-error learning to optimise a policy for an agent in an environment, often used 

for 

game-playing and robotics tasks. 

 

Table I describes Gradient Boosting Machine (GBM) Ensemble Learning that Combines multiple decision trees to 

improve the performance of a model, often used for regression and classification tasks. Random Forest Ensemble 

Learning Combines various decision trees and selects features randomly to improve the performance of a model, often 

used for regression and classification tasks. K-Means Clustering Unsupervised Learning Partitions data into K clusters 

based on similarity, often used for data segmentation and anomaly detection tasks. Support Vector Machine (SVM) 

Supervised Learning Maximizes the margin between different classes to classify data, often used for classification 

and regression tasks. Naive Bayes Classifier Supervised Learning Uses Bayes' theorem to calculate the probability of 

each category based on the input features, often used for classification tasks. K-Nearest Neighbors (KNN) Supervised 

Learning Classifies data based on the K nearest data points in the feature space, often used for classification and 

regression tasks. 

 

 

This paper aims to explore the utilization and efficacy of these RL algorithms and priority-based scheduling strategies 

in the context of load balancing within cloud computing. Through a comprehensive review and analysis, we seek to 

elucidate their strengths, limitations, and practical implications for optimizing cloud infrastructure. 

 

1.1 Reinforcement Learning with Policy Gradients: 

In scheduling jobs, the reinforcement learning approach employs a policy gradient algorithm, as outlined by Liu et al. 

(2019). This algorithm directly optimizes the procedure, mapping states to actions, through gradient ascent on the 

expected reward (see Fig. 1). While effective for learning intricate scheduling policies, this approach may necessitate 

a substantial amount of training data to converge to an optimal policy. 

 

Ant Colony Optimization: 

This strategy utilizes an algorithm to identify an optimal schedule by simulating the behavior of ants. The algorithm 

generates a population of "ants" that explore the search space by depositing pheromones, attracting other ants to 

promising solutions (Zhou et al., 2019; Wang, Zhang, Liu, Li et al., 2022). With the evaporation of pheromones over 

time, the algorithm converges to a solution with a high concentration of pheromones. While proficient in finding 

optimal solutions for complex scheduling problems, this approach may require numerous ants to adequately explore 

the search space (Wang, Zhang, Liu, Zhao et al., 2022b; Zhou et al., 2020). 

 

1.2 Key Contributions of This Paper: 

a) Employing Deep Q-learning, target networks, and involvement rerun, we integrate a task scheduling method aimed 
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at reducing computing resource consumption during offloading. 

b) We compare and examine various machine learning-based solutions for diverse load-balancing tasks in data centers. 

c) Implementation of an Actor-Critic-based Compute-Intensive Workload Allocation Scheme in a cloud environment, 

considering various parameters. 

d) The paper outlines and underscores the challenges and future research directions pertinent to the present study. 

 

1.3 Organization of the Paper: 

Section 2 provides an overview of Cloud Computing technology coupled with reinforcement learning. Section 3 delves 

into the proposed work, offering a detailed description of the performance of the Actor-Critic-based Compute-

Intensive Workload Allocation in reinforcement learning. Section 4 discusses numerous open challenges and avenues 

for future research. Finally, conclusions and avenues for future work are drawn. 

 

Proposed Methodology 
 

The proposed approach employs deep reinforcement learning to derive an optimal resource allocation policy based on 

real-time workload dynamics and resource availability within a cloud environment. A fundamental component of this 

approach is the utilization of an actor-critic deep reinforcement learning algorithm, comprising an actor responsible 

for suggesting resource allocation decisions and a critic tasked with evaluating the quality of these decisions (see Fig. 

2). Both the actor and critic components are implemented as neural networks and are trained using a hybrid approach 

combining supervised and reinforcement learning techniques. 

 

To evaluate the effectiveness of the proposed algorithm, simulations are conducted within a cloud data center 

environment. Results from these simulations demonstrate the superiority of the proposed approach over traditional 

resource allocation algorithms, particularly in terms of resource utilization and workload completion time. 

 

The optimal Q-value for a given state-action pair (f_t, l_t) is determined by the Bellman equation for the optimal Q-

value in reinforcement learning. This equation calculates the expected sum of the immediate reward (R_x_t+1) and 

the discounted value of the maximum Q-value of the subsequent state (f_t+1) and all possible actions (l_t+1) that can 

be taken from it. The discount factor (α) in the equation determines the weight assigned to future rewards, allowing 

for recursive computation of the optimal Q-value for each state-action pair. 

 

The Bellman equation serves as a foundational principle in reinforcement learning, offering a systematic framework 

for determining optimal Q-values and guiding decision-making processes within the proposed resource allocation 

algorithm. 

This represents the reward received at the current time step (t+1). The discount factor, α (alpha), plays a crucial role 

in determining the significance of future rewards relative to immediate rewards. With a value ranging between 0 and 

1, α ensures that the agent considers both immediate rewards and the potential future rewards, accounting for 

uncertainty and potential delays in their receipt.  

 

max_l_t+1 Q*(f_t+1, l_t+1) denotes the maximum Q-value for the subsequent state f_t+1 and all feasible actions 

l_t+1 that can be taken from it, as depicted in Fig. 3. This value signifies the anticipated total reward achievable by 

adhering to the optimal policy from the subsequent state and action onwards. The max operator selects the highest Q-

value, corresponding to the optimal action according to the existing policy. 

 

The ∑[...] operator, representing the expectation, computes the anticipated value of the expression within the brackets, 

given the current state-action pair (f_t, l_t).  

 

In summary, the Bellman equation for the optimal Q-value articulates the anticipated total reward for a state-action 

pair, incorporating the immediate reward and the maximum expected future rewards from the subsequent state and all 

possible actions. This equation serves as a cornerstone in reinforcement learning, commonly utilized in various Q-

learning algorithms to update Q-values and enhance the agent's policy iteratively. 

 

Furthermore, the introduction of self-adaptive systems is discussed, which possess the capability to monitor their 

behavior and dynamically adjust to changing conditions to achieve specified performance objectives. 
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The algorithm proceeds through the following steps: 

 

1. Initialization: Start by initializing the actor network, represented as πθ(s), and the critic network, denoted as Qπθ(s, 

a), with random weights and biases. Also, initialize the learning rates for the actor and critic (γa and γc respectively), 

along with the TD error discount factor, β. 

 

2. Training Epoch: For each training epoch, repeat the subsequent steps: 

 

    a. Initial State: Begin by receiving the initial state, s1, by observing the environment. 

     

    b. Episode Loop: For each episode, repeat the following steps: 

     

        i. Action Selection: Select an action, at, based on the current state, st, using the actor policy. 

         

        ii. Execution: Execute the chosen action, at, in the environment, receiving a reward, rt, and transitioning to the 

next state, st+1. 

         

        iii. TD Error Calculation: Calculate the TD error in the critic, δπθ, using the current action, reward, and next 

state. 

         

        iv. Policy Gradient Calculation: Compute the policy gradient in the actor, ∇θJ(θ), using the advantage function. 

This function is derived from the TD error, reflecting the log probability rise of the current action in the current state. 
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        v. State Update: Update the current state to the next one, st = st+1. 

     

3. Termination: Conclude the training process. 

 

In essence, this algorithm aims to train an actor-critic RL model capable of learning a policy that maximizes 

cumulative rewards across a sequence of states and actions in an environment. It leverages neural networks to 

approximate both the policy and value function. The TD error discount factor regulates the balance between immediate 

and future rewards, while the policy gradient is updated using the advantage function to integrate information on the 

current policy's effectiveness. Actor-critic algorithms, such as the one depicted in Figure 4, concurrently optimize a 

policy (the actor) and estimate its value (the critic). 

 

In the context of compute-intensive load balancing in cloud computing, the objective is to allocate computational 

resources (e.g., VM instances) to tasks effectively, minimizing processing time and maximizing resource utilization 

while adhering to constraints. 

 

Equations utilized in actor-critic algorithms for this purpose include: 

 

1. Policy Updates Equation: 

\(\forall \theta = \omega \sigma \forall_{\theta} \log \pi(l_k | k, \theta) \cdot g\) 

   

This equation updates the actor's policy weights (θ) based on the advantage estimate (σ) and the log probability of 

selecting the action l_t in state k_t according to the policy π. 

 

2. Value Function Update Equation: 

\(\forall Z(l_t) = \beta(\delta_t - V(l_t))\) 

 

This equation updates the critic's value function (Z) for a state l_t based on the advantage estimate (δ_t) and a learning 

rate (α). 

 

Performance Matrix Setup in a Cloud Environment 

 

Simulation Environment 
 

To evaluate the effectiveness of the proposed method, we establish a simulation environment using CloudSim, a Java-

based cloud simulation tool. CloudSim allows us to create and configure a realistic cloud infrastructure where our 

suggested deep reinforcement learning technique can be implemented and evaluated effectively. 

 

Our implementation of the deep reinforcement learning technique is developed in Python and integrated into the 

CloudSim-generated cloud environment. This integration enables us to assess the performance of our method in a 

simulated but realistic cloud setting. 

 

In setting up the simulation environment, we draw upon Google's task events dataset to define and generate user tasks. 

This dataset provides a comprehensive set of task events, allowing us to create diverse and representative user tasks 

for our simulations. 

 

For the infrastructure setup, we deploy four Virtual Machines (VMs), each equipped with 16 GB of RAM and one 

terabyte of storage capacity. These VM configurations are chosen to mirror typical cloud environments and provide a 

suitable platform for evaluating our proposed method. 

 

During the simulations, tasks are executed on the VMs, with each task requiring storage space ranging from 5 GB to 

100 GB. This variability in storage requirements ensures that our simulations encompass a wide range of workload 

scenarios, allowing us to thoroughly evaluate the performance of our method across different task types and resource 

demands. 
Algorithm Response Time CPU Utilisation Throughput Task Completion Time (ms) 

GA 350.0 0.061 0.078 0.075 
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DSOS 352.1 0.052 0.065 0.062 

MSDE 421.0 0.051 0.059 0.051 

PSO 450.23 0.480 0.490 0.056 

WOW 520.3 0.490 0.491 0.561 

DQL 572.592 0.451 0.4386 0.495 

ACD-RL 510 0.445 0.4275 0.470 

 

 

 

Simulation Results 
 

The performance of various resource allocation algorithms in a cloud computing environment is compared in Table 

II. This comparison encompasses four key metrics: response time, CPU utilization, throughput, and task completion 

time (measured in milliseconds). The algorithms under consideration include Genetic Algorithm (GA), Dynamic 

Search Optimization Strategy (DSOS), Modified Symbiotic Organism Search (MSDE), Particle Swarm Optimization 

(PSO), Whale Optimization Algorithm (WOA), Deep Q-Learning (DQL), and Actor-Critic Deep Reinforcement 

Learning (ACD-RL). 

 

Upon analysis of the table data, it is observed that GA and DSOS exhibit the lowest response times, with GA achieving 

the fastest response time of 350.0 ms. In terms of CPU utilization, WOA demonstrates the highest value, reaching 

0.490, while PSO and DQL achieve the highest throughput values of 0.490 and 0.4386, respectively. The task 

completion time is relatively low across most algorithms, with MSDE achieving the lowest value of 0.051 ms. 

 

Relative to the other algorithms, ACD-RL performs reasonably well, with a response time of 510 ms, CPU utilization 

of 0.445, throughput of 0.4275, and task completion time of 0.470 ms. 

 

Overall, Table II provides insights into the comparative performance of different resource allocation algorithms in a 

cloud computing environment, facilitating informed decision-making regarding algorithm selection for specific cloud 

computing tasks. 

 

Conclusion and Future Scope 
 

The proposed scheme is designed to optimize task execution time by efficiently allocating resources and distributing 

workloads across different servers. Our next step involves enhancing the model by incorporating a priority order 

mechanism, which will allow us to assign relative importance to tasks and adjust the state space, action space, and 

reward function accordingly. 

 

Algorithms will be trained to learn scheduling policies that consider the priority order of tasks, allowing for the 

observation of how prioritizing high-priority tasks affects the rewards they receive. The performance of our proposed 

Actor-Critic Deep Reinforcement Learning (ACD-RL) agent surpasses that of six other algorithms, demonstrating its 

effectiveness in optimizing resource allocation. 

 

In terms of system cost, the ACD-RL agent exhibits similar behavior to the Dynamic Queueing (DQL) and Particle 

Swarm Optimization (PSO) algorithms, as task distribution is evenly spread across all data. However, algorithms like 

Dynamic Search Optimization Strategy (DSOS) and Modified Symbiotic Organism Search (MSDE) could achieve 

better performance if their search spaces were reduced, thereby minimizing CPU usage and improving overall system 

efficiency. 

 

Quantization levels affect performance, with higher quantization levels marginally improving throughput and task 

completion time, although not as significantly as the ACD-RL approach. ACD-RL excels in determining optimal 

actions by achieving a 23% improvement over previous studies in terms of indexing LB values, while maintaining a 

concise Task Completion Time. Additionally, ACD-RL ensures efficient CPU utilization, reducing it to 12% 

compared to other algorithms' potential 38%. 
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For future endeavors, we plan to explore the establishment of an edge cloud computing network system to facilitate 

collaborative computing tasks. Additionally, we aim to simplify the training process by adopting federated learning-

based RL, which requires only live data flow to the data center for sharing model parameters, eliminating the need for 

local training data and reducing computational and communication complexities. 
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