
 

 
 

ISSN: 2959-6386 (Online), Vol. 2, Issue 2 

Journal of Knowledge Learning and Science Technology 

journal homepage: https://jklst.org/index.php/home  

 
 

 

Towards Autonomous Infrastructure Management: A Survey of AI-

driven Approaches in Platform Engineering 
Jesu Narkarun Arasu Malaiyappan1, Musarath Jahan Karamthulla2, Anish Tadimarri3. 

1Meta Platforms Inc USA 
                                                                            2TransUnion, USA 
                                                                              3High Radius, USA 

Abstract 

The rapid evolution of digital infrastructure demands innovative solutions to streamline management processes. This survey 

explores the emerging paradigm of autonomous infrastructure management, focusing on AI-driven approaches within platform 

engineering. By synthesizing current research and industry practices, we delineate the landscape of autonomous infrastructure 

management, examining its key components, challenges, and potential benefits. We discuss various AI techniques, including 

machine learning, optimization algorithms, and cognitive computing, employed to enable autonomy in infrastructure management 

tasks. Furthermore, we analyze real-world implementations and assess their effectiveness in enhancing system reliability, 

scalability, and efficiency. Through this comprehensive review, we aim to provide insights into the trajectory of autonomous 

infrastructure management and highlight avenues for future research and development. 
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Introduction 

In the digital era, where businesses rely heavily on complex infrastructures to support their operations, the efficient 

management of these infrastructures becomes paramount. Traditional methods of infrastructure management often 

struggle to keep pace with the dynamic nature of modern systems, leading to inefficiencies, vulnerabilities, and 

increased operational costs. To address these challenges, a paradigm shift towards autonomous infrastructure 

management has emerged, leveraging the capabilities of artificial intelligence (AI) to automate and optimize various 
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aspects of infrastructure operations. 

 

Platform engineering plays a crucial role in shaping the architecture and functionality of modern infrastructures, 

serving as the foundation upon which applications and services are built and deployed. As the complexity of platforms 

continues to grow, there is a pressing need for innovative approaches to manage and maintain them effectively. AI-

driven techniques offer promising solutions by enabling platforms to adapt, self-optimize, and autonomously respond 

to changing conditions and demands. 

 

This survey aims to provide a comprehensive overview of the state-of-the-art AI-driven approaches in autonomous 

infrastructure management within the context of platform engineering. By synthesizing insights from both academic 

research and industry practices, we seek to elucidate the key concepts, methodologies, challenges, and potential 

benefits associated with this emerging paradigm. Through a systematic examination of relevant literature and real-

world implementations, we aim to shed light on the current landscape of autonomous infrastructure management and 

its implications for the future of platform engineering. 

 

In this introduction, we first define the concept of autonomous infrastructure management and highlight its 

significance in the context of modern digital ecosystems. We then outline the objectives and scope of this survey, 

followed by an overview of the structure of the paper. Finally, we discuss the anticipated contributions and potential 

implications of our research in advancing the understanding and adoption of AI-driven approaches in platform 

engineering and infrastructure management. 

Objectives: 

 

1. Examine the Current State of Autonomous Infrastructure Management: The primary objective is to assess the 

existing landscape of autonomous infrastructure management, focusing on AI-driven approaches within platform 

engineering. This involves analysing the literature, frameworks, and real-world implementations to understand the 

scope, capabilities, and limitations of autonomous infrastructure management systems. 

 

2. Identify Key AI Techniques and Methodologies: Another objective is to identify and categorize the AI techniques 
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and methodologies utilized in autonomous infrastructure management. This includes exploring machine learning 

algorithms, optimization techniques, cognitive computing models, and other AI-driven approaches deployed to enable 

automation, self-optimization, and intelligent decision-making in managing complex digital infrastructures. 

 

3. Evaluate the Effectiveness and Impact of AI-driven Approaches: The survey aims to evaluate the effectiveness and 

impact of AI-driven approaches on the performance, reliability, scalability, and efficiency of platform engineering 

and infrastructure management. By analysing case studies, experimental results, and industry best practices, we seek 

to assess how AI technologies enhance system resilience, reduce operational overhead, and enable proactive 

maintenance and optimization strategies. 

Methodology 

1. Selection Criteria: A set of inclusion and exclusion criteria are established to guide the selection of literature for 

analysis. Inclusion criteria may include relevance to autonomous infrastructure management, focus on AI-driven 

approaches, recent publication dates, and empirical studies or case studies demonstrating real-world implementations. 

Exclusion criteria may involve outdated or irrelevant publications, non-peer-reviewed sources, and works lacking 

empirical evidence or practical relevance. 

 

2. Data Extraction and Synthesis: Relevant information, including key concepts, methodologies, AI techniques, case 

studies, and findings, is extracted from selected literature sources. This data is synthesized to identify common themes, 

trends, challenges, and opportunities within the field of autonomous infrastructure management. Information 

extraction may involve categorizing AI techniques, summarizing experimental results, and comparing different 

approaches based on performance metrics and effectiveness. 

 

3. Classification of AI Techniques: I techniques utilized in autonomous infrastructure management are classified and 

categorized based on their functionality and application domains. This classification may include machine learning 

algorithms (e.g., supervised learning, unsupervised learning, reinforcement learning), optimization techniques (e.g., 

genetic algorithms, simulated annealing), natural language processing (NLP) models, and cognitive computing 

frameworks. 

 

4. Analysis and Interpretation: The synthesized data is analysed to provide insights into the current state of autonomous 

infrastructure management and the role of AI-driven approaches in platform engineering. This involves interpreting 

the findings, identifying gaps in the literature, discussing challenges and limitations, and highlighting potential 

avenues for future research and development. 

 

5. Validation and Peer Review: The methodology and findings of the survey are validated through peer review and 

expert feedback. Peer reviewers assess the rigor, validity, and relevance of the methodology, data analysis, and 

interpretations, providing constructive criticism and suggestions for improvement. This iterative process helps ensure 

the reliability and credibility of the survey results. 

 

Background: 

 
If the infrastructure of the future mirrors that of the past or present, it would signify a substantial failure on the part of 

engineers and infrastructure managers. The constant and escalating changes in climate, technology, society, economy, 

and institutions suggest that the challenges ahead will likely be vastly different and more intricate than those faced 

today (Allenby, 2011; Marchant et al., 2011; Markolf et al., 2018). With a rapidly urbanizing global population of 

roughly 7.7 billion and a concurrent rise in the middle class with evolving consumption patterns and food demands, 
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the relationship between humanity and the planet is undergoing significant transformation. These dynamics are pivotal 

in propelling and hastening the integration of human, natural, and built systems, resulting in complex, interconnected, 

and rapidly evolving systems at all levels—from local infrastructures to regional and global networks (Lo and Yeung, 

1998; NRC (US National Research Council), 2003; Chester et al., 2019). 

 

Addressing the need for infrastructure to adapt, transform, and function effectively amidst complexity and rapid 

change increasingly involves the integration of infrastructure and information systems, including various artificial 

intelligence (AI) capabilities, into the design, construction, operation, and maintenance processes. However, 

implementing this strategy successfully necessitates a clear understanding of relevant information, communication, 

and computational frameworks, and how they interact in practice—a challenging task in today's environment. 

Consequently, the rise of a new global infrastructure with profound implications for humanity, its institutions, and the 

planet has largely gone unnoticed and unacknowledged. This new infrastructure, referred to as cognitive infrastructure, 

already permeates nearly every aspect of the world we inhabit (Allenby, 2019). 

 

While each infrastructure system and sector has its own distinct characteristics, what often goes unrecognized is that 

many of these infrastructures and technologies are not just standalone entities but are also being integrated into an 

emerging infrastructure known as the "cognitive infrastructure." Functionally defined as encompassing information 

processing, reasoning, learning, problem-solving, decision-making, and other cognitive processes (Squire, 2009), the 

cognitive infrastructure is rapidly ascending. For instance, the proliferation of machine-to-machine connections is 

projected to rise from 6.1 billion in 2018 to 14.7 billion by 2023 (Cisco, 2020). Similarly, expenditure on sensors and 

IoT-related technologies is expected to reach $1.2 trillion by 2022 (Columbus, 2018), with many of these devices 

integrating cognitive capabilities through the accelerated deployment of AI technologies such as neural networks (Lee, 

2018). Essentially, the confluence of advancing capabilities across seemingly disparate infrastructures and 

technologies is engendering a cognitive infrastructure, bound together by AI and a myriad of institutional structures, 

distributed globally, and evolving emergent systemic and behavioral capabilities. 

 

Cognitive infrastructure presents challenges that traditional infrastructure systems do not. Operating at a level beyond 

human comprehension or perception, cognitive infrastructure operates at significantly higher bandwidths, speeds, and 

complexity levels than individuals can access. Unfortunately, this disconnect was apparent in tragic incidents like the 

Lion Air Flight 610 and Ethiopian Airlines Flight 302 accidents, where the divergence between the development of 

automated flight control systems in Boeing 737-MAX planes and pilot training and implementation contributed 

significantly to the accidents (Gelles, 2019; Wise, 2019; Herkert et al., 2020; U.S. House Committee on Transportation 

Infrastructure, 2020). Effectively integrating human and machine cognition into infrastructure systems thus emerges 

as a significant professional challenge that has yet to be adequately addressed. 

 

Integrating cognitive infrastructure is crucial for engineers, technologists, and policymakers striving to develop 

resilient, agile, and adaptive infrastructure systems capable of meeting present and future demands. However, 

recognizing the cognitive infrastructure as a whole is imperative to responsibly meeting the demand for better 

infrastructure. Without a systemic perspective, issues like security vulnerabilities stemming from the adoption of AI 

technologies may be overlooked. Designers of IoT devices, for example, may embed sensors and communication 

capabilities without fully understanding their place within the overarching cognitive infrastructure, risking 

vulnerability to adversarial attacks. 

 

While it may be premature to ponder how humans should respond as critical cognitive functions transition to higher-

level techno-human systems embedded in a global cognitive infrastructure, it is not too early to acknowledge the 

emergence of this new infrastructure. Understanding and anticipating its implications is increasingly vital. Without 

this initial step, ethical, rational, and appropriate infrastructure design, construction, operation, maintenance, and the 

necessary educational and institutional structures to support them will remain elusive. Thus, this paper initiates a broad 

discussion on AI and its relationship to infrastructure, exploring various tasks and services within infrastructure 

systems that may be augmented or replaced by AI, and concludes with a discussion on broader implications as AI and 

infrastructure systems become increasingly intertwined in the forthcoming decades. 

 

AI and Infrastructure Leadership in the Context of Complexity 
 

Defining "AI" proves elusive, as acknowledged by the U.S. National Science and Technology Council in its 2016 
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report. Some define AI broadly as computerized systems displaying behaviors traditionally associated with 

intelligence, while others define it as systems capable of solving complex problems or achieving goals in diverse real-

world circumstances. Here, we use "AI" to encompass big data and analytics dimensions, envisioning a future where 

humans leverage AI to navigate an increasingly intricate world. 

 

In managing dynamic and complex systems, specific leadership capabilities are essential. Administrative Leadership, 

prevalent in stable conditions, relies on formalized structures to govern organizations. Conversely, Adaptive 

Leadership thrives in changing or chaotic environments, emphasizing adaptability, creativity, and learning. Enabling 

Leadership, crucial for shifting between Administrative and Adaptive practices as conditions evolve, entails creating 

conditions for flexibility. Evaluating which AI techniques best support each leadership style becomes increasingly 

pertinent in the evolving landscape of AI applications in infrastructure. 

 

Several tasks align with AI applications in infrastructure, including pattern recognition, system control, optimization, 

and prediction. A variety of techniques such as rule-based systems, genetic algorithms, and artificial neural networks 

have been applied across various civil engineering domains. While not exhaustive, these applications highlight the 

diverse capabilities of AI in infrastructure management. 

 

Different AI techniques may suit stable and unstable conditions differently. Techniques like Case-Based Reasoning 

(CBR), adept at solving novel problems by referencing similar past cases, align well with stable Administrative 

Leadership contexts, aiding in system control, planning, and prediction. Conversely, techniques like Artificial Neural 

Networks (ANN), which mimic human brain processing, excel in complex, data-intensive, and dynamic scenarios 

typical of Adaptive Leadership. 

 

Overall, AI complements and, in some cases, replaces Administrative and Adaptive Leadership roles within 

infrastructure systems. Humans and institutions must recognize the benefits and tradeoffs among different leadership 

approaches and AI roles. Furthermore, considerations are warranted regarding the frameworks, resources, and 

knowledge systems necessary to facilitate seamless transitions between leadership approaches as future conditions 

fluctuate. 

 

The following section delves deeper into the roles and tasks AI may undertake in infrastructure systems moving 

forward, examining how AI can support infrastructure leadership amidst complexity. 

 

AI Intelligences and Tasks within Infrastructure Systems 
 

Assessing AI's potential to enhance or replace existing capabilities necessitates a thorough examination of the 

intelligences involved. Huang and Rust (2018) posit that AI job replacement primarily occurs at the task level, with 

"lower" intelligence tasks—such as repetitive and routine tasks—being more susceptible to AI replacement than 

"higher" intelligence tasks, which may involve emotional or empathetic aspects. Adapting Huang and Rust's 

framework to the context of infrastructure systems—primarily service providers—allows us to link various 

infrastructure services to four types of intelligences: Mechanical, Analytical, Intuitive, and Empathetic. We outline 

cases, supported by examples where feasible, of how AI has or could potentially replace various infrastructure-related 

tasks at each intelligence level. 

 

Mechanical Intelligence 
At the lowest level of intelligence lies Mechanical Intelligence, characterized by routine tasks, minimal creativity, and 

a focus on efficiency and consistency (Huang and Rust, 2018). AI at this level operate based on rules and excel in 

performing repetitive, homogenous tasks efficiently and reliably. They often outperform humans in consistency, 

reliability, and work-rate. 

 

However, Mechanical AI encounters challenges in scaling to the systems level, limiting its applicability to the large-

scale and dynamic infrastructure systems typical of modern cities. These AI are optimized for well-bounded and tightly 

constrained situations, typically operated by a single unit or a small, integrated group of components. As operations 

expand in network, scale, or complexity, Mechanical AI may struggle to cope, leading to potential overwhelm. In such 

scenarios, AI at higher intelligence levels may prove more suitable and effective. 
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Analytical Intelligence 
 

The second tier of intelligence, Analytical Intelligence, relies on processing information, making decisions, problem-

solving, and adapting to new data (Huang and Rust, 2018). Tasks at this level are often complex, requiring substantial 

data analysis, yet they possess a level of consistency and predictability. AI operating at this level utilize algorithms to 

iteratively learn from and extract insights from extensive or continuous datasets. These Analytical AI systems are 

increasingly interconnected units rather than standalone entities. Despite their capabilities, human interpretation and 

intuition remain essential complements to AI at this level. While AI offers diverse and valuable decision support, 

humans retain ultimate decision-making authority. 

 

One significant challenge with Analytical AI is its limited adaptability to problems lacking historical parallels (Chen 

et al., 2008). This limitation becomes particularly pertinent in managing infrastructure systems amidst a changing 

climate. Non-stationarity, the concept that past data may not accurately predict future trends and conditions, poses a 

significant challenge for urban and infrastructure systems (Milly et al., 2008; Koutsoyiannis, 2011; Lins, 2012). 

Consequently, Analytical AI should not be viewed as an "off-the-shelf" solution for a broad array of problems. 

Engineers and infrastructure managers must carefully consider the nuances, strengths, and weaknesses of AI when 

applying it to infrastructure significantly impacted by climatic variables like weather prediction, stormwater systems, 

and flood management. 

 

Intuitive Intelligence 
 

The subsequent level of intelligence, Intuitive Intelligence, relies on experience-based thinking and creativity, 

addressing contextual, chaotic, and idiosyncratic tasks (Huang and Rust, 2018). AI functioning at this level emulate 

human-like learning and adaptation based on prior experiences and new information, emphasizing problem 

understanding within specific contexts—a characteristic shared by both human and AI Intuitive Intelligence. 

 

However, applying Intuitive AI faces challenges in solving "wickedly complex" problems devoid of singular "right" 

solutions, such as natural resource allocation and management (Chester and Allenby, 2019a). The algorithms 

supporting Intuitive AI often rely on human-defined data to determine desired outcomes, hindering AI training and 

learning in situations with unclear solutions. Despite these challenges, AI remains invaluable for generating, exploring, 

and analysing various scenarios, with human stakeholders retaining responsibility for final decisions. 

 

Another challenge lies in the "black-box" nature of Intuitive AI, where it may produce opaque outcomes without a 

deep understanding of underlying systems and processes (Chen et al., 2008). While some level of opacity may be 

inevitable due to complexities surpassing human cognitive capabilities, discussions on the acceptable level of "black-

box" transparency are essential as AI becomes increasingly embedded in infrastructure systems. Communities, 

policymakers, and infrastructure managers must engage in open discussions about the potential implications of 

relinquishing control to software and algorithms, weighing potential benefits against drawbacks in diverse contexts. 

 

 

Empathetic Intelligence 
 

At the pinnacle of intelligence lies Empathetic Intelligence, which hinges on empathy, social interaction, and 

communication. Tasks involving Empathetic Intelligence revolve around comprehending emotions, responding 

appropriately to others' emotions, and influencing the emotions of others (Huang and Rust, 2018). AI operating at this 

level exhibits behaviors akin to having feelings and strives to understand, resonate with, and influence human 

emotions. Although still in its infancy, initial applications of Empathetic AI often center on emotional analytics (Abou-

Zeid and Ben-Akiva, 2010; Quercia et al., 2014). However, the high demand for social and communication skills at 

this level suggests that human involvement will remain indispensable in the foreseeable future. 

 

Similar to Intuitive AI, Empathetic AI faces considerable challenges when dealing with wickedly complex problems. 

These challenges stem from the diverse norms and values held by stakeholders within a system, which may not be 

clearly defined or codified and can evolve over time. Consequently, Empathetic AI struggles to comprehend the 

varying and sometimes conflicting values among stakeholders and lacks the ability to be trained around a universally 
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agreed-upon solution or outcome (Baum, 2020). 

 

Furthermore, Empathetic AI is susceptible to various biases, whether implicit or explicit, originating from the 

individuals who develop the algorithms or the data used for training (Tomer, 2019). For instance, facial recognition 

AI has exhibited racial biases (Grother et al., 2019). Fully eliminating biases from Empathetic AI systems is unlikely. 

Hence, it is imperative for citizens, decision-makers, and AI developers to engage in transparent discussions regarding 

the appropriate applications of Empathetic AI, considering the potential unintended consequences arising from biases. 

 

Figure 1 offers a concise overview of the key characteristics of each intelligence level, exemplifying instances from 

infrastructure systems, and current/potential AI applications across each intelligence level. 

 

 

How Could AI Revolutionize Infrastructure Services and Introduce Novel Capabilities? 
 

An examination of the four levels of intelligence within infrastructure systems offers valuable insights. Firstly, it is 

evident that AI, particularly in terms of automation, has already found extensive application in Mechanical tasks. 

While there remains room for AI growth and development at this level, it seems that we have largely reached a 

saturation point, reducing the likelihood of significant transformative changes. This underscores the potential for AI 

to support and enhance Administrative Leadership roles within infrastructure systems. Conversely, Analytical tasks 

represent the arena where AI is poised to exert the greatest disruption in the foreseeable future. As AI capabilities 

continue to advance, fueled by increasing data accessibility, decreasing computing costs, and advancements in 

techniques like Artificial Neural Networks (ANNs), Analytical tasks (and the roles of Adaptive Leadership) are 

increasingly susceptible to AI intervention. Given that a considerable portion of engineering and infrastructure tasks 

are analytical in nature, the augmentation or replacement of Analytical tasks by AI is anticipated to bring about 

fundamental and transformative changes to infrastructure systems as we currently understand them. 

 

Therefore, looking ahead, engineers and infrastructure managers must prioritize strengthening and emphasizing 

Intuitive and Empathetic tasks and intelligences, thereby enhancing Enabling Leadership capabilities. This is crucial 

because, despite humans exhibiting higher levels of Intuitive and Empathetic Intelligence compared to AI (a trend 

likely to persist for the foreseeable future), there is still room for improvement. Human error remains a concern, both 

in routine and unexpected circumstances. Additionally, Empathetic Intelligence is presently not widely integrated or 

considered in the development of engineered and infrastructure systems. Consequently, to effectively balance the 

Mechanical (i.e., Administrative Leadership) and Analytical (i.e., Adaptive Leadership) advantages of AI with the 

Intuitive and Empathetic (i.e., Enabling Leadership) strengths of humans, continuous learning from past errors and 

the cultivation of skills to make proficient decisions under unforeseen conditions are imperative. Moreover, concerted 

and ongoing efforts should be directed towards enhancing our capacity to incorporate social, emotional, and equity 

dynamics into engineering and infrastructure planning and implementation. 

 

Discussion and Conclusion 
 

Understanding how AI technologies are likely to revolutionize infrastructure is crucial for adapting to the dynamic 

conditions in which these systems operate. As evidence mounts of the accelerating and unpredictable nature of 

infrastructure environments, it becomes imperative for design and management strategies to exhibit agility and 

flexibility. Historically, new technologies have necessitated the creation of control processes to harness their 

capabilities towards institutional goals. For instance, the industrial revolution brought about engines and novel 

processes, prompting the establishment of new institutions and procedures to regulate their unprecedented energy 

output. 

 

However, the control dynamics surrounding AI technologies may deviate from historical patterns. AI, fundamentally 

centered on augmenting and potentially replacing cognition, presents unique challenges. Unlike earlier technological 

advancements where control was attainable, the cognitive infrastructure facilitated by AI implies a shift in our 

understanding of control. Instead of exerting full control, efforts may need to focus on establishing symbiotic 

relationships with AI, acknowledging that these cyber-technologies will guide us in ways that may not always be fully 

comprehensible. 
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Nevertheless, AI holds the potential to assist us in navigating increasingly intricate environments. By designing 

knowledge systems, institutions can empower sensing and analytical capabilities to adapt to evolving conditions. 

Leveraging AI technologies effectively can empower infrastructure systems to respond adeptly to the multifaceted 

challenges posed by modern society. 

 

In conclusion, while AI introduces novel capabilities and challenges traditional notions of control, embracing these 

technologies with a forward-thinking mindset can enable us to navigate the complexities of the future infrastructure 

landscape. It is imperative for institutions and stakeholders to remain proactive in understanding and harnessing the 

transformative potential of AI in infrastructure design and management. 

 

 
 

 

Capabilities (paired with different leadership styles) are essential for operating in both calm and chaotic environments 

(Miller and Munoz-Erickson, 2018). As our systems and their operating environments grow increasingly complex, 

surpassing the cognitive grasp of any single group or institution, AI may provide indispensable cognitive insights to 

ensure system adaptability, continued service provision, and meeting evolving needs. 

 

The mapping of AI applications to intelligences and leadership roles appears to endorse the varied approaches 

necessary for addressing domains of complexity. The Cynefin framework categorizes systems as simple, complicated, 

complex, or chaotic, with disorder governing transitions between domains (Snowden and Boone, 2007; Chester and 
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Allenby, 2019a). Each domain necessitates a distinct approach to tackling challenges. While infrastructure 

traditionally belonged to the domain of complicated systems, they are now increasingly perceived as complex (Chester 

and Allenby, 2019b). Complicated systems demand data collection, analysis, and decision-making, while complex 

systems require probing, testing, and a commitment to adaptability and transformation. The intelligence mapping in 

Figure 1 offers a valuable array of AI applications applicable to infrastructure in both complicated and complex 

environments. Mechanical and Analytical Intelligences align well with complicated situations, where system 

behaviors are predictable and environments relatively stable. Intuitive and Empathetic Intelligences correspond to 

complex systems, where perturbations can lead to unpredictable behaviors, and "satisficing" is necessary to manage 

wicked problems across technical and social domains (Chester and Allenby, 2019a). While all intelligences are 

essential at different times during system operation, developing and deploying Intuitive and Empathetic Intelligences 

(and Enabling Leadership) in humans and institutions, alongside the deployment of Administrative and Adaptive 

Leadership via AI, seems imperative to address the increasing complexity and non-stationarity of our systems and 

their environments. 

 

Ultimately, we are at the early stages of AI development and application in infrastructure systems. The topics discussed 

in this paper serve as an initial exploration of some of the key opportunities and challenges associated with AI in 

infrastructure systems—especially concerning the leadership and skills required to confront the complex challenges 

of the Anthropocene. Future avenues of inquiry could include interviews and surveys aimed at understanding 

infrastructure practitioners' current perspectives on the potential benefits and drawbacks of AI. Additionally, further 

investigation into which level of intelligence is most suitable for specific problems/contexts, as well as a detailed 

assessment of the AI techniques likely to be most effective/appropriate, would be beneficial. Prior to or in conjunction 

with these efforts, open, candid, and iterative discussions across society are necessary to deliberate on the level of 

cognitive infrastructure we are comfortable with and the degree of "control" we are willing to delegate to cognitive 

infrastructure. Through these actions, engineers and infrastructure stakeholders can strive to strike the right balance 

between human and AI capabilities necessary to navigate our increasingly complex world effectively and equitably. 
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