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Abstract 

This paper presents an in-depth examination of the application of Artificial Intelligence (AI) and Machine Learning 

(ML) solutions to streamline regulatory reporting processes within the United States banking sector. With increasing 

regulatory complexity and reporting requirements, banks are under pressure to enhance efficiency while ensuring 

compliance. Through a comprehensive analysis of existing literature and case studies, this study explores the potential 

of AI/ML technologies to automate and optimize regulatory reporting tasks. By identifying key challenges, 

opportunities, and best practices, this research aims to provide insights for banks seeking to adopt AI/ML solutions in 

regulatory reporting, ultimately contributing to improved operational effectiveness and regulatory compliance. 

 

Keywords: Regulatory reporting, United States banking, Artificial Intelligence, Machine Learning, Automation, 

Compliance, Efficiency, Operational effectiveness.  

Article Information 
Article history:  13/10/2022          Accepted: 15/10/2022         Online: 30/10/2022         Published: 30/10/2022 
DOI:   https://doi.org/10.60087/jklst.vol1.n1.P166 

Correspondence author:  Sanjeev Prakash 

 

Introduction  

 
 

https://doi.org/10.60087/jklst.vol1.n1.


Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), Vol. 2, Issue 1 149                 

 

The rapid advancement of Machine Learning (ML) and Artificial Intelligence (AI) is catalyzing a surge of interest in 

sophisticated quantitative methodologies across diverse economic sectors. In aligning with global digitization trends, 

banks are poised to deliver products that not only meet but exceed the evolving expectations of customers while also 

competing effectively with FinTech entities. The proliferation of e-commerce and the seamless integration of intuitive 

online services have cultivated uniform expectations within society, notably emphasizing attributes such as speed, 

user-friendliness, transparency, and comprehensive digitization in banking services. 

 

AI methodologies offer multifaceted applications across various facets of banking operations, including: 

 

1. Market risk management: Encompassing client behavior forecasting and alignment of asset and liability maturity 

profiles. 

2. Valuation of loan collateral (e.g., real estate) and financial instruments. 

3. Customer service enhancements: Ranging from ID card information scanning to speech and speaker recognition 

through the deployment of chatbots and the development of intelligent application interfaces tailored to individual 

customer profiles. 

4. Automated detection of fraudulent activities and money laundering attempts, integral to Know Your Customer 

(KYC) protocols, alongside bolstering cybersecurity measures. 

5. Implementation of Internal Ratings-Based (IRB) models to compute regulatory capital for credit risk. 

6. Stress-testing protocols to assess institutional resilience under adverse scenarios. 

7. Automated creditworthiness assessment systems. 

 

In the realm of Big Data and advanced analytics methodologies, many stakeholders within the sector are actively 

exploring the aforementioned dimensions to varying extents. Big Data, characterized by massive volumes of structured 

and unstructured data from diverse sources, underpins these efforts, while advanced analytics harnesses a multitude 

of analytic techniques to extract actionable insights from this data landscape. 

 

The European Banking Authority (EBA), among others, recognizes the transformative potential of integrating Big 

Data and advanced analytics in banking operations, facilitating innovation and operational efficiencies across the 

sector. 

The utilization of advanced analytics methods presents challenges not only for banks but also for regulators. Banks 

perceive opportunities for risk reduction and income enhancement through the seamless adoption of AI solutions, 

achieved by employing more sophisticated approaches, acquiring specialized competencies, and developing robust IT 

systems. However, the application of AI also entails inherent risks such as misuse or avoidance due to regulatory 

ambiguity and managerial or societal reluctance towards AI technologies. 

 

Our research objectives are as follows: 

 

1. Compare and evaluate various scientific and regulatory perspectives on defining AI and ML. 

2. Propose clear definitions of AI and ML for legislative purposes. 

3. Assess the complexity and interpretability of different advanced quantitative methods applied in banking. 

4. Propose a viable approach for further advancing quantitative methods, particularly in areas requiring strict 

interpretability. 

 

This research targets the following stakeholders: 

 

1. Policymakers responsible for defining AI and ML for regulatory compliance. 

2. Practitioners employing complex quantitative methods across various banking domains. 

3. Executives tasked with making strategic decisions concerning the adoption of complex quantitative systems within 

banking domains. 

 

The primary benefits derived from our study include: 

 

1. Enhanced comprehension of the current landscape of AI/ML definitions proposed by scientists, regulators, and 

international organizations. 

2. Insight into the application of complex quantitative methods within diverse banking domains. 

3. Comparative analysis of the complexity and interpretability of the aforementioned methods. 
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4. Exploration of potential approaches for advancing the application of complex quantitative methods in banking. 

 

Definitions of AI 
 

Defining AI presents a significant challenge within the realm of advanced computational methodologies. Several 

factors contribute to this complexity: 

 

1. Diverse Definitions: The definitions of AI and ML vary across industries and contexts, leading to ambiguity and 

inconsistency. 

2. Varied Understanding: Perception of AI among different societal stakeholders—managers, scientists, politicians, 

and legal institutions—differs, resulting in a lack of cohesive identity. 

3. Differential Consequences: The implications of categorizing a method as AI or ML are approached differently, 

adding to the challenge of defining these concepts. 

 

Currently, AI is defined by scientists and various institutions, with a focus on legal status and its implications. We aim 

to present perspectives from both domains: the state-of-the-art understanding aids researchers and practitioners, while 

legal interpretations influence companies' decisions on investing in AI-based solutions. Scientific definitions of AI 

have evolved over the 20th and 21st centuries, whereas legal institutions have been shaping their approaches more 

recently. While the scientific perspective prioritizes current advancements, legal considerations hold greater 

significance for companies and banks, given their adherence to regulatory frameworks. 

 

Historically, the concept of AI emerged sporadically, with early mentions appearing in literature, such as Karel 

Čapek's play "R.U.R." in 1920. However, a more systematic approach to AI emerged in the mid-20th century. Alan 

Turing's proposal of the Turing Test in 1950 marked a significant milestone, suggesting that a machine demonstrating 

human-like conversation skills could be deemed intelligent. Nonetheless, the Turing Test has faced criticism for its 

narrow focus on chatbots, highlighting its limited practical applications within the broader scope of AI research. 

 

The year 1956 is widely regarded as the inception of the modern concept of Artificial Intelligence (AI), marked by 

the Dartmouth Summer Research Project on Artificial Intelligence. The conference, led by John McCarthy and Marvin 

Minsky, was founded on the premise that "every aspect of learning or any other feature of intelligence can in principle 

be so precisely described that a machine can be made to simulate it." While this thesis shaped the trajectory of AI 

development, defining AI remained a challenge, hinging on interpretations of what constituted a "feature of 

intelligence" and whether a particular advancement was sufficiently complex to qualify as AI. 

 

The notion of AI can be elucidated within the framework of intelligent agents, as outlined in widely adopted textbooks 

such as "Artificial Intelligence: A Modern Approach." An intelligent agent is defined as a "system that receives 

percepts from the environment and performs actions." These agents are categorized into various types, including 

simple reflex agents, model-based reflex agents, goal-based agents, utility-based agents, and learning agents. Of 

particular relevance to our article are the following two categories: 

 

1. Simple Reflex Agents: These agents react solely to current incentives from the environment, disregarding its 

historical context, and operate according to a straightforward rule: if condition A is met, then action B is executed. 

2. Learning Agents: These agents have the capability to enhance their performance based on their interactions with 

the environment, allowing them to adapt and improve over time. 

 

These classifications offer valuable insights into the functioning and potential applications of AI, aligning closely with 

the focus of our article. 

 

The key aspects of the definition presented above are as follows: AI does not necessarily require learning capabilities; 

it operates autonomously within a given environment and can be based on relatively simple mechanisms, such as a 

streetlamp that activates in darkness or a thermostat. We view the categorization of AI agents into distinct categories 

as a coherent and practical approach, facilitating tailored solutions for each type of AI. However, this approach has its 

drawbacks. Categorizing solutions can prove challenging in practical applications, especially when the consequences 

of classification vary significantly. Additionally, regulators and global institutions often prefer simplified definitions, 

potentially rendering the categorization of intelligent agents too complex for everyday use. 
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An alternative proposal suggests using the term Computational Intelligence (CI) instead of AI, as advocated by Poole, 

Mackworth, and Goebel in 1998. This perspective defines an agent as a program equipped with prior knowledge about 

the world, enabling learning based on historical data. However, some researchers argue that the term "artificial" is not 

problematic in defining AI, and substituting it with another word would yield minimal change. 

 

 

Definitions of ML 

 
Defining the term ML (Machine Learning) is generally considered easier compared to AI, as it is narrower in scope 

and less abstract in meaning. Unlike AI, ML definitions tend to be more uniform across the literature. Our review of 

ML literature is less extensive than that of AI, given the similarity of most ML definitions. Similar to the AI section, 

we begin with insights from the state-of-the-art, followed by definitions from global organizations shaping ML 

understanding, and conclude with regulatory perspectives. 

 

The key challenge in defining ML lies in precisely determining whether a machine, computer, or program is exhibiting 

learning behavior. Initially, ML was defined as a field enabling computers to learn without explicit programming 

(Samuel, 1959). However, this definition lacks specificity regarding the concept of "learning." A more refined 

definition characterizes ML as a computer program that learns from experience E regarding task T and performance 

measure P, with its performance on T improving as measured by P with experience E (Mitchell, 1997). Mitchell's 

definition, widely accepted in engineering contexts, remains relevant today (Alzubi, Nayyar, Kumar, 2018). From a 

scientific standpoint, this definition offers clarity and utility. In essence, ML can be viewed as automated detection of 

meaningful patterns in data, empowering programs to learn and adapt (Osisanwo et al., 2017, based on Shalev-

Shwartz, Ben-David, 2014: 7). 

 

 

The aforementioned definitions of ML are notably similar and appear clear and beneficial from a scientific standpoint. 

However, their practical application raises certain concerns, particularly in clarifying what is meant when asserting 

that "X is an ML algorithm." In statistical modeling, the concept of "learning" is akin to the process of estimating 

model parameters. Yet, once these parameters are estimated, the learning process typically concludes, at least 

temporarily. Therefore, when declaring "X is an ML algorithm," it implies that the algorithm has autonomously 

determined parameters based on available data during the estimation process. 

 

While model parameters can be estimated using various optimizers or techniques, in practice, humans may also 

intervene to set these parameters for reasons such as specific expectations regarding future events. In such instances, 

the ML algorithm ceases to be truly ML, as it lacks the crucial element of autonomous learning from data. While 

scientifically this divergence may seem inconsequential, from a legal standpoint and in terms of practical application 

by companies, it holds significance. 

 

Demands for sophisticated quantitative systems 

 
In a broader context, the interest in regulating AI stems from the escalating complexity of quantitative solutions 

deployed across various sectors, including banking. As institutions entrusted with public confidence, banks must 

address potential uncertainties surrounding these applied solutions. Common concerns within the realm of complex 

quantitative system applications include: 

 

1) Legality: Providers of quantitative systems must demonstrate compliance with applicable laws and regulations. The 

growing intricacy of these solutions may pose challenges in assessing their legal applicability in practice, as 

highlighted by the European Commission (2019), for instance. 

 

2) Ethics: Defining an ethical quantitative system presents challenges, with key aspects including the avoidance of 

discrimination and stigmatization based on age, gender, ethnicity, disability, etc., as well as the preservation of privacy 

and prevention of physical and mental harm. Ethical dilemmas may arise, such as determining the ethics of denying 

mortgage loans based on age or using social network data—like contacts with a poor credit history—to influence 

creditworthiness scores (Sadok et al., 2022). 
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3) Transparency: Ensuring transparency entails thorough documentation of applied solutions, including clear and 

traceable algorithms that perform as intended. Such systems should also be subject to adequate validation processes. 

 

4) Explainability: While transparency pertains to the clarity of algorithms, explainability refers to the 

comprehensibility of system outputs by humans. This involves understanding the degree of influence of input 

information on the output. The level of output comprehension required depends on the specific application—for 

example, indicating the most impactful variables for one domain, while necessitating clear correspondence between 

input and output for another. 

5) Security: It is imperative that developed systems are implemented securely, minimizing the risk of hacking or 

unauthorized access. 

6) Data Handling: Ensuring that input data is of high quality and adequately protected is crucial. Proper data 

governance processes must be maintained with due diligence. 

7) Human Supervision: Systems should undergo regular monitoring overseen by human operators, tailored to the 

nature of the applied solution. 

8) Accuracy: While some level of bias may be unavoidable, particularly in forecasting, it should be quantifiable. 

Sources of bias must be identified and effectively addressed. Bias can stem from various factors, including systemic 

bias resulting from institutional procedures, human bias influenced by simplified judgment, computational bias arising 

from non-representative input or mishandling of outlier data, and algorithmic bias such as over-fitting or under-fitting 

of data patterns or misapplication of mathematical representations. 

 

The list of concerns outlined above can be further expanded or refined within specific application areas or institutions. 

Although statistical computations have long been prevalent in the banking industry, the introduction of AI and ML 

applications has introduced new challenges. Differences in the definition of ML between documents published by the 

European Banking Authority (EBA) and other authors/institutions (such as ISO, OECD, and the European 

Commission) highlight the complexities inherent in regulating AI and ML within the banking sector. 

 

 

Comparison of quantitative tools applied in banking areas 

 

 

The importance of clear definitions for AI and ML in banking is closely tied to the heavily 

regulated nature of the banking sector, which operates under various levels of regulation including 

national credit laws and both national and international banking-specific regulators. Consequently, 

regulations governing AI and ML governance aim to impose additional restrictions and 

requirements on tools classified as AI or ML. Avoiding vague definitions for AI and ML is crucial 

for several reasons: 

 

1) Clarity is essential when constructing advanced and costly quantitative frameworks in banks, 

ensuring an appropriate approach over the long term. 

2) Ambiguous legal foundations may impede banks' transition to more advanced solutions. 

3) Lack of clarity may lead to the exploitation of legal loopholes and the structuring of complex 

quantitative systems in ways that evade classification as AI/ML. 

 

To address these concerns, our approach involves: 

 

1) Briefly examining different banking areas and presenting potential AI applications based on 

available literature and the author's experience. 

2) Classifying the methods applied, assessing their complexity, interpretability, and 

threats/opportunities in practical applications, and comparing their usefulness within the restrictive 

regulatory environment. 
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Table 1 outlines various banking domains alongside potential applications of advanced techniques 

discussed in this paper. While the list of areas is compiled from the author's perspective, it is 

important to note that some banking categories may be broader than others. Additionally, the 

specific applications listed next to each domain do not encompass all possible AI applications 

within those areas. However, these applications reflect general trends within specific domains. 

Many of these applications are proposed by scientists and their practical implementation in banks 

must adhere to existing regulations and remain resilient to potential changes. Regulatory 

approaches vary across countries and geographical regions, such as the EU, as discussed in 

sections 2 and 3. 

 

 

Different segments within the banking industry present unique opportunities for the application of 

advanced solutions. Here, we explore specific banking areas and potential applications of 

advanced techniques within each domain: 

 

1. Risk Management: 

   - Utilizing AI/ML algorithms for credit risk assessment, including predictive modeling to 

identify default probabilities. 

   - Implementing anomaly detection systems to identify fraudulent transactions or suspicious 

activities. 

   - Developing AI-powered stress testing models to evaluate the impact of adverse economic 

scenarios on a bank's portfolio. 

 

2. Customer Service: 

   - Deploying AI-powered chatbots to handle customer inquiries and provide personalized 

assistance. 

   - Implementing natural language processing (NLP) algorithms to analyze customer feedback and 

sentiment, enabling banks to improve service quality. 

   - Utilizing predictive analytics to anticipate customer needs and offer tailored product 

recommendations. 

 

3. Fraud Detection and Cybersecurity: 

   - Leveraging AI/ML algorithms for real-time fraud detection, including pattern recognition to 

identify unusual transaction patterns. 

   - Implementing biometric authentication systems for secure access to banking services. 

   - Using machine learning algorithms to analyze network traffic and detect potential cyber threats 

in real-time. 

 

4. Compliance and Regulatory Reporting: 

   - Implementing AI-powered solutions for Know Your Customer (KYC) processes, including 

automated identity verification and risk assessment. 

   - Utilizing natural language processing (NLP) techniques to analyze regulatory documents and 

extract relevant information for compliance purposes. 
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   - Implementing AI/ML algorithms for transaction monitoring to detect and prevent money 

laundering activities. 

 

5. Asset Management: 

   - Utilizing machine learning algorithms for portfolio optimization, including predictive modeling 

to identify investment opportunities and manage risk. 

   - Implementing AI-powered robo-advisors to provide automated investment advice based on 

individual risk profiles and financial goals. 

   - Using sentiment analysis techniques to gauge market sentiment and make informed investment 

decisions. 

 

These are just a few examples of how advanced solutions, powered by AI and ML technologies, 

can be applied across various banking domains to improve efficiency, enhance customer 

experience, and mitigate risks. 

 

Specific banking areas and possible applications of advanced solutions within those areas 

 

Banking area Advanced methods applications 

Risk 

management: 

credit risk 

For Probability of Default (PD), the applied methods involve logistic 

regression, Support Vector Machines or logistic regression with random 

coefficients (Dong, Lai, Yen, 2010). Other proposals involve Naive Bayes, 

neural networks, the K‑Nearest Neighbour classifier, decision tree or random 

forest models (Wang et al., 2020). Other commonly used credit risk models are 

Loss Given Default (LGD), which is a share of an asset that is lost when a 

client defaults, and Exposure at Default (EAD), which is a predicted loss that 

the bank may incur in the case of client default. For LGD and EAD, the 

considered approaches involve e.g.: Naive Bayes, linear regression with data 

transformations, mixture models, neural networks, and logistic regression 

(Yang, Tkachenko, 2012). The PD, LGD and EAD are the three main 

parameters needed to calculate economic/regulatory 

capital for banking institutions under Basel II. For the credit cards scoring 

system, the bidirectional long short‑term memory (LSTM) neural network has 

been proposed (Ala’raj, Abbod, Majdalawieh, 2021). For credit risk stress 

testing purposes, least absolute shrinkage and selection operator regression 

(LASSO) (Chan‑Lau, 2017) and Multivariate Adaptive Regres- sion Splines 

(MARS) (Jacobs Jr., 2018) have been proposed. The real estate price (where 

real estate is a loan collateral) can be estimated with various ML techniques 

such as linear regression, convolutional neural networks, and random forest 

(Potrawa, Tetereva, 2022). 
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Risk 

management/ 

IT: 

cybersecurity 

Cybersecurity can be classified as a part of operational risk presented below, 

however, we decided to present it as a separate section. The cyber- security 

section presented here is based mainly on Sarker et al. (2020). 

An intrusion detection system (network and software security) can be built 

with the application of: Support Vector Machines, neural networks (including 

recurrent neural networks and LSTM), the K‑Nearest Neighbo- ur classifier, 

the K‑means algorithm, Naıve Bayes, the decision tree model, the genetic 

algorithm, and the hidden Markov model. The Support Vector Machines 

model has been used for DDoS detection (where the DDoS is Distributed 

Denial of Service, which is an attack made with multiple computers and 

internet connections meant to make a machine or network inaccessible for 

intended users). For malicious activities and anomaly detection, neural 

networks, Adaboost, decision tree models, and Support Vector Machines have 

been applied. Probabilistic neural networks have been proposed for user 

authentication with keystroke dynamics, where keystroke dynamics is the 

typing style of a client (Revett et al., 2007). 

 

 

 

 

Banking area Advanced methods applications 

Risk 

management: 

liquidity risk 

Artificial neural networks and Bayesian networks can be applied to various 

liquidity risk processes such as stress tests, simulations, recovery and 

contingency plan. AI/ML can also improve the Internal Liquidity Adequacy 

Assessment Process (ILAAP) and Asset Liability Management (ALM) 

processes (Milojević, Redzepagic, 2021). For a liquidity risk early warning 

prediction system, LASSO regression, random forest and gradient boosting with 

decision trees have been proposed (Drudi, Nobili, 2021). 

For early warning liquidity risk, system neural networks and Bayesian networks 

have been also proposed (Tavana et al., 2018). 

Risk 

management: 

operational risk 

In the case of operational risk, the area where advanced quantitative 

techniques are heavily explored, the Know Your Customer (KYC) process is 

used. The KYC guards the bank against financial fraud (including credit card 

fraud), money laundering, and terrorist financing. For anti‑money laundering, 

Support Vector Machines (Keyan, Tingting, 2011; Chen, 2020), neural 

networks (González, Velásquez, 2013), Bayesian networks (Khan et al., 

2013), decision trees and random forests (Chen, 2020) have been 

proposed. For fraud detection systems, Bayesian algorithms, the K‑Nearest 

neighbour, Support Vector Machines and the bagging ensemble classifier based 

on the decision tree model have been applied (Pun, Lawryshyn, 2012; Dal 

Pozzolo, 2015; Leo, Sharma, Maddulety, 2019). 
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Risk 

management: 

interest rate 

risk 

The topic connected with both interest rate risk and liquidity risk is mat- 

ching of maturity profiles of assets and liabilities. Therefore, in the case 

of assets, loan prepayment models are applied and in the case of liabilities, 

savings and current accounts churn prediction models are used. 

In the case of savings accounts, churn prediction neural networks, gradient 

boosting based on decision trees, the Generalised Linear Model (GLM), 

Support Vector Machines and random forests have been applied (Verma, 

2020). For prepayment modelling, random forest alongside 

the proportional hazard model (Liang, Lin, 2014), neural networks 

(Zhang, Teng, Lin, 2019), logistic regression (Zahi, Achchab, 2020), and 

the gradient boosting classifier based on decision trees (Schultz, 

Fabozzi, 2021) have been proposed. For future interest rates prediction, the 

Gaussian mixture model (Kanevski, Timonin, 2010) has been proposed. 

 

Banking area Advanced methods applications 

Risk 

management: 

market risk 

For investment risk prediction, the Adaboost Support Vector Machine has been 

proposed (Luo, Metawa, 2019). For the Credit Default Swap (CDS) derivative, 

the spread approximation method with random forest regres- sion has been 

proposed (Mercadier, Lardy, 2019). For evaluation of risk premium of 

commodity futures contracts, LSTM neural networks have been proposed (Rad 

et al., 2021). Value at Risk (VaR) models are com- monly applied in a market 

risk area, for example, for equity risk. The VaR computes a maximum loss over 

a given period with an assumed level of confidence. For VaR calculation, an 

important aspect is the future volatility prediction. For volatility estimation, 

neural networks and the Generalised Autoregressive Conditional 

Heteroskedastic (GARCH) model have been proposed (Monfared, Enke, 2014; 

Zhang et al., 2017). For foreign exchange (FX) risk, the genetic algorithm 

alongside the LSTM neural network has been proposed (Loh et al., 2022). For 

derivatives pricing, neural networks and boosted random trees have been 

proposed (Ye, Zhang, 2019). 

Risk 

management: 

model risk 

AI and ML approaches can be applied during the validation of applied qu- 

antitative systems in different banking areas. Advanced ML models can be built 

as a benchmark for the existing, simpler models. For data quality va- lidation, 

the outlier detection with ML can be applied, for example, based on the 

Gaussian Mixture Model, the Dirichlet Process Mixture Model, neu- ral 

networks, probabilistic principal component analysis (PPCA), Support Vector 

Machines (Domingues et al., 2018), or the so‑called isolation forest model 

based on the random forest algorithm (Liu, Ting, Zhou, 2008). 
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Customer 

experience 
Nowadays customer experience in the case of using digital banking and 

visiting bank stationary branches can be simplified and time‑optimised with 

the application of ML. With convolutional neural networks widely applied 

for image recognition (Hijazi, Kumar, Rowen, 2015; Liu, 2018), the bank 

can apply models that significantly shorten time necessary 

for the existing processes. The image recognition system can be applied, for 

example, to: a model that automatically reads information from the client ID 

or a model that verifies if the next tranche of a mortgage can be transferred 

to the client based on the construction progress docu- 

mented with photos. In the case of digital banking, a personalised system with 

transaction categorisation and cash flow prediction can be built with recurrent 

neural networks (Kotios et al., 2022). The automated credit risk scoring system, 

offering customised loans to the clients based on their characteristics 

(every‑month cash flows, etc.) can be developed with ML techniques 

(discussed in the credit risk section above). Advanced chat bots based on a 

neural networks approach called Natural Language Pro- cessing (NLP) 

(Adamopoulou, Moussiades, 2020) can be developed, for example, to call 

customers with a reminder of an overdue loan instalment. To automatically 

propose banking products that a given client would be most interested in, banks 

can develop a profiling system adapted to digital banking, for example, based 

on k‑means and neural networks algorithms (Dawood, Elfakhrany, Maghraby, 

2019). 

 

The majority of proposed solutions for application in specific banking areas, as presented in Table 

1, tend to recur across various banking sectors. This recurrence is due to the versatile nature of 

most quantitative tools, which can be effectively applied to a broad spectrum of banking 

challenges. Table 2 offers the author's subjective evaluation of these methods, along with the 

associated threats and opportunities. Only methods meant for datasets with observable dependent 

variables (labelled datasets) and designed for classification or regression problems are included. 

Therefore, optimization algorithms (e.g., genetic algorithms) or methods intended for unlabelled 

datasets (e.g., K-means algorithm) are excluded from this categorization. 

 

In Table 2, complexity and interpretability are assessed under the assumption that the situation is 

not overly simplified, with several auxiliary variables considered, and methods applied due to their 

unique features. The evaluated methods encompass: 

 

1) Linear regression based on untransformed data. 

2) Linear models based on transformed data, including multinomial regression and models pre-

processed with PCA or PPCA. 

3) Generalized Linear Models, such as logistic regression. 

4) Regularized linear regression techniques like LASSO, ridge regression, and elastic net 

regression. 

5) Decision trees for both classification and regression. 

6) Random forests for classification and regression tasks. 
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7) Mixed (mixture) models, including Gaussian mixture models and Dirichlet process mixture 

models. 

8) Multivariate Adaptive Regression Splines. 

9) Boosting methods like Adaboost and Gradient boosting with decision trees or other models. 

10) Markov models, including hidden Markov models and Monte Carlo hidden Markov models. 

11) Neural networks of various types, including recurrent, LSTM, bidirectional LSTM, 

convolutional, and NLP. 

12) Bayesian methods, such as Naive Bayes and Bayesian networks. 

13) Support Vector Machines, including Support Vector Regression. 

14) Ensemble methods that combine results from multiple complex models. 

15) Proportional hazard models. 

16) K-Nearest Neighbor classifier. 

17) Autoregressive models, including GARCH. 

 

 

Assessment of advanced quantitative methods in the context of banking 

 

Quantitative 

method 

Complexity/ 

Interpretabi- 

lity* 

Opportunities 

of application 

in the banking area 

Threats of application 

in the banking area 

Linear 

regression 

Very low 

complexity/ 

very easy to 

interpret 

Simplicity, understandabi- 

lity of the method by a lot of 

staff, the short time needed 

to estimate and interpret the 

model, the method easy to 

explain to high management 

and 

the regulator 

Works well only for linear 

dependencies between 

variables, the necessity of 

testing for the fulfillment of 

assumptions, the regula- 

tor may potentially question 

such a solution as the one 

with too weak predictive 

power 

Linear mo- 

dels based 

on transfor- 

med data 

Low 

complexity/ 

moderate to 

interpret 

Transformations can be 

tailored to a specific econo- 

mic theory; the application 

of transformations may be a 

great way to enhance 

existing linear models in 

banking 

In the case of PCA and more 

complicated transforma- 

tions, the interpretabili- 

ty, in general, is more diffi- 

cult, multinomial regression 

and some transformations may 

produce unstable pre- dictions 

 

Quantitative 

method 

Complexity/ 

Interpretabi- 

lity* 

Opportunities 

of application 

in the banking area 

Threats of application 

in the banking area 
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Generalised 

Linear 

Models 

Low 

complexity/ 

easy 

to interpret 

Logistic regression is a sta- 

ple in the case of binary 

classification, for example, in 

the case of PD modelling, 

ease of interpretation, which is 

especially important in 

the case of explanation of the 

reasons for loan rejection to 

clients, etc. 

Using less popular link func- 

tions than the logit/probit 

requires more knowledge and 

understanding of sta- tistics, 

the assumption regarding the 

independence of random 

variables, and in some cases 

applying Generalised Linear 

Models may be questioned as 

too simple in the final form 

and at the same time too 

complex in terms of require- 

ments regarding distribu- tion 

assumptions, etc. 

Regularised 

linear 

regression 

Very low 

complexity/ 

easy 

to interpret 

May enhance the perfor- 

mance of linear regression 

models at the same time 

being relatively simple, very 

helpful if the linear model is 

the right choice, but the 

issues with overfitting were 

detected (too good fit to the 

training dataset with 

considerably worse 

performance in the case of 

actual predictions) 

The existence of hyperpara- 

meter requires some serious 

enhancement of the estima- 

tion process, which is also 

more time‑consuming than the 

standard linear regres- sion 

estimation process, 

the choice of regularised 

regression over non‑regulari- 

sed requires additional 

documentation 

Decision tree Very low 

complexity/ 

very easy to 

interpret 

Simplicity may work very 

well in the case of simple 

segmentation tasks, inter- 

pretability, easy to explain, 

visualise, and capture 

non-linear relationships, 

may be easily combined 

with other methods 

Inadequate for more com- 

plex problems, a single de- 

cision tree is very sensitive 

to the dataset based on which 

model parameters are 

estimated, which may result 

in weak performance on new 

data, requires addi- tional 

testing for stability 

Random 

forest 

Average 

complexity/ 

hard 

to interpret 

Greatly improves stabili- ty 

issues of single decision 

trees, fast computation, 

despite being hard to 

interpret, the algorithm 

behind random forests is 

relatively easy to explain 

Requires model agnostic 

methods in order to inter- 

pret results and therefore in 

most cases extensive 

documentation is essential 
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Quantitative 

method 

Complexity/ 

Interpretabi- 

lity* 

Opportunities 

of application 

in the banking area 

Threats of application 

in the banking area 

Mixed 

(mixture) 

models 

Average 

complexity/ 

moderate to 

interpret 

Random effects provide great 

tools for specific 

requirements regarding 

available data and can handle 

them better than fixed effects, 

they can be applied to many 

different practical problems, 

mixture models can be 

associated with different 

models (linear models as well 

as Generalised Linear Models 

or even random forests) 

Mixture models require 

additional testing, i.e. regar- 

ding assumed distributions of 

random effects, random 

effects are not so easy 

to interpret and explain to 

higher management as fixed 

effects, application of random 

effects to more complex 

models, for example, to 

random forests significantly 

increases time needed for 

computation 

Multivariate 

Adaptive 

Regression 

Splines 

Low 

complexity/ 

easy 

to interpret 

Elasticity, simple for 

interpretation, automatic 

selection of the auxiliary 

variables for the model, 

computer implementations of 

the model are time‑efficient 

No possibility of explicitly 

presenting the formulas 

describing the confidence 

intervals for the parameters, 

similarly to a single decision 

tree, may be inadequate for 

more complex problems and 

requires additional testing for 

stability 

Boosting 

methods 

for classifica- 

tion and 

regression 

High 

complexity/ 

very hard to 

interpret 

Models based on boosting 

often give very accurate 

results (many Kaggle com- 

petitions were won with the 

application of boosting 

methods), existence of very 

time-effective software 

implementations, boosting 

may be applied for different 

classes of base models, e.g.: 

linear models, decision trees, 

etc. 

Results are very difficult to 

interpret (require model 

agnostic methods), the cor- 

rect choice of hyperpara- 

meters may be difficult, 

sensitivity to overfitting 

to training data (in that case, 

the model fits the training data 

well but does not work well in 

the case of actual predictions) 
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Markov 

models 

Average 

complexity/ 

easy 

to interpret 

A wide variety of applica- 

tions, strong economic back- 

ground 

The method is based on 

discrete states, which may 

cause serious technical 

issues in implementation, 

the method is superseded 

often by other more accur- 

ate models, frequently 

requires other models/me- 

thods to produce accurate 

results 

 

 

 

Quantitative 

method 

Complexity/ 

Interpretabi- 

lity* 

Opportunities 

of application 

in the banking area 

Threats of application 

in the banking area 

Neural 

networks 

Very high 

complexity/ 

very hard to 

interpret 

Very accurate if done cor- 

rectly, and the method fits 

well with many classes of 

problems, despite being very 

complex, there are 

a lot of scientific materials 

and tutorials available 

A very time‑consuming 

method, requires specific 

knowledge and experience in 

order to correctly choose 

network architecture, sen- 

sitive to overfitting, requires 

model agnostic methods 

for results interpretation 

and very extensive docu- 

mentation 

Bayesian 

methods 

High 

complexity/ 

easy 

to interpret 

Easy to interpret, Bayesian 

methods provide a conve- 

nient setting for a wide ran- ge 

of methods, for example, 

issues with missing data 

May produce misleading 

results in certain cases, is 

time‑consuming, requires 

expert knowledge and 

experience to produce an 

accurate model that works 

well in practice 
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Support 

Vector 

Machines 

High 

complexity/ 

hard 

to interpret 

A computationally time‑ef- 

fective method even with 

large datasets, many stati- 

stical software implemen- 

tations, despite being a re- 

latively complex method, the 

number of hyperpara- meters 

is relatively small (for 

example, in comparison with 

Gradient boosting based on 

decision trees) 

The method difficult to 

interpret, among other 

advanced algorithms relat- 

ively hard to understand and 

explain to higher 

management 

Ensemble 

methods 

Very high 

complexity/ 

very hard to 

interpret 

May produce very accura- te 

tools if done well, the fu- 

ture‑proof method in terms of 

accuracy 

In the case of ensemble of 

several complicated models, 

the interpretability may be 

very hard or even impossi- 

ble, a very time‑consuming 

method that requires a lot of 

knowledge and careful- ness 

from its practitioners, due to 

poor interpretability can be 

explored only in the areas 

where interpretability is not 

required, neither expected 

 

 
In situations where strict interpretability is paramount, higher management may hesitate to approve changes 

incorporating more accurate yet potentially less interpretable solutions. In such scenarios, we advocate for a gradual 

transition towards more intricate approaches. For instance, in credit risk modeling, transitioning from logistic 

regression to a neural network might face resistance from higher management or regulatory hurdles. As outlined in 

Table 2, methods that are challenging to interpret would be extremely difficult or impossible to implement when strict 

interpretability is required. However, in such instances, existing solutions can be augmented with easily interpretable 

methods. This gradual enhancement could involve: 

 

1) Incorporating random effects into models with only fixed effects, as seen in the shift from logistic regression to 

logistic regression with random effects in PD modeling. 

2) Introducing additional segmentation into the modeling problem. For instance, when modeling a portfolio using 

linear regression, enhancing the model might involve segmenting the dataset into several sub-portfolios using a 

decision tree, followed by applying separate regularized linear regression to each segment. 

 

The advantages of gradually enhancing existing solutions are manifold: 

 

1) Executives responsible for final decisions may view such proposals as safer and may be more inclined to approve 

them. 

2) The risk of unforeseen issues, such as loss of social trust and reputation, during implementation is reduced compared 

to sudden transitions from simple to complex models. 

3) These models are easier to develop due to greater reliance on existing solutions, as opposed to a complete paradigm 

shift. 
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4) Comparing old and enhanced versions of the model in terms of predictions, accuracy, and result simulations is 

straightforward. 

5) Such models are more resilient to potential regulatory changes regarding the treatment of AI. 

 

 

Discussion 

 
 

In various sectors of the banking industry, such as credit risk assessment, quantitative solutions are already subject to 

regulation to some degree. Approaches like linear or logistic regression serve as foundational models for many 

quantitative systems utilized in practice. The banking sector is increasingly striving to adopt a data-driven approach 

while ensuring compliance with regulations, maintaining ethical standards, and fostering trustworthiness. However, 

there are variations across different domains; for instance, credit risk assessment tends to be more rigorously regulated 

and detailed compared to areas like product recommendation models in mobile banking applications. 

 

Given the current landscape of quantitative solutions in banking and the prevailing regulatory approaches toward AI 

and ML for legislative purposes, we propose the following: 

 

- A broad definition of AI that encompasses all mentioned quantitative systems in the article: "AI is a system that, at 

certain stages of its process, perceives its environment and acts autonomously." 

- A similarly broad definition of ML that encompasses all the quantitative approaches discussed: "ML is an approach 

that generates output based on input data from various sources, such as expert opinion parameters or observations of 

specific phenomena." 

 

Given the comprehensive nature of the definitions proposed above, virtually all quantitative and autonomous processes 

within the banking industry could fall under the umbrella of AI. Consequently, regulations governing applied solutions 

should be applicable to both established methods within the industry and new proposals put forth by domain experts. 

This approach satisfies crucial regulatory objectives, namely clarity and practical applicability. 

 

Adopting the proposed approach to legislative definitions would allow for formulating requirements specific to AI/ML 

challenges within particular contexts, such as credit risk. Alternatively, regulations could omit the explicit inclusion 

of AI/ML definitions altogether, similar to the approaches seen in the US and Chinese examples discussed earlier. 

However, this approach risks future regulatory interpretations of AI/ML and may contribute to uncertainty, hindering 

innovation and progress. Therefore, we contend that a broad definition of AI/ML in regulatory frameworks offers a 

more robust solution. 

 

Under such regulations, requirements pertaining to the explainability of AI methods in the credit risk domain should 

be clear and consistent across regulatory bodies. It is imperative to avoid situations where a method classified as AI 

by one authority differs from another's understanding. Moreover, a general approach to AI definition allows for 

formulating diverse requirements across different banking domains without solely focusing on classification as AI. In 

essence, virtually all existing quantitative solutions in banking would be classified as AI, while all data-driven models 

would be classified as ML. 

 

The primary advantage of this approach lies in regulatory clarity. Practically, it eliminates the need to differentiate 

between more and less complex approaches, thus alleviating industry concerns regarding defining underlying 

concepts. Alternatively, if regulators seek to distinguish between simple and complex approaches, clear guidelines 

must be established to delineate AI models from non-AI models—an inherently challenging task. This distinction is 

complicated by the potential black-box nature of complex, nonlinear solutions and the difficulty humans face in 

understanding relationships between variables created by such models or interpreting their results accurately. 

 

An important consideration in the discussion surrounding clarity and explainability of applied solutions is the inherent 

complexity of the methods indirectly employed in the process. These methods, which seek to optimize model 

parameters or hyperparameters, such as genetic algorithms or algorithms aimed at enhancing the interpretability of 

model results, add layers of intricacy to the overall process. For instance, the proposal to simplify complex models 

based on the outcomes of explanatory methods (Gosiewska, Kozak, Biecek, 2021) renders the final model parameters 
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more understandable for interpreting the ultimate outcome. However, the entire algorithm leading to the final solution 

is considerably more complex than traditional statistical solutions like linear or logistic regression because it involves: 

 

1) Developing a complex model with an optimal search for parameters/hyperparameters. 

2) Applying a selected explainable method algorithm. 

3) Employing an additional algorithm to transform the results of the explainable method into a new, simplified model. 

4) Testing the final solution. 

 

As a result, regulators in the banking industry should pay particular attention to the following aspects of quantitative 

AI systems: 

 

1) Defining the threshold for sufficient explainability of quantitative methods utilized in banking. 

2) Specifying the required level of clarity in the final results—for instance, whether it is necessary to identify the most 

influential client features leading to loan rejection and clearly articulate their numerical impact on the outcome. 

 

The requisite level of clarity in model outcomes would render the distinction between more and less complex solutions 

(AI or non-AI) unnecessary. Interpreting results generated, for instance, by linear regression should be relatively 

straightforward, whereas meeting the same requirements with a neural network could pose a more formidable 

challenge. Therefore, irrespective of a system's complexity, if a model developer can meet a certain threshold of 

algorithm clarity and final outcome interpretation, the proposed solution could be applied to a given banking domain. 

However, defining the adequate level of explainability is also challenging due to the stochastic nature of many methods 

proposed for interpreting model outcomes. 

 

A broad approach to defining AI and ML could aid in fostering public understanding of AI. For instance, the notion 

that explaining the outcome of a particular AI system requires creating another AI system might provoke anxiety, 

unless accompanied by the understanding that essentially all quantitative systems based on data are classified as AI 

by regulators. Society is generally apprehensive about the prospect of AI with unclear objectives (black box), spiraling 

out of control, and potentially causing unpredictable harm. An intriguing perspective on this issue suggests that instead 

of attributing bad outcomes to inherently mysterious and uncontrollable systems, we should view the misuse of 

inappropriate technology as a deliberate act by the system's creator. The cultural narrative surrounding complex and 

enigmatic technology is often leveraged to justify the deep involvement of the AI industry in policymaking and 

regulation, thereby reinforcing the market dominance of large companies and legitimizing their participation in 

regulatory processes. 

 

Conclusions 
 

In this study, we have endeavored to examine the applications of AI and ML in the banking sector. Our analysis began 

with an exploration of the definitions of AI and ML as delineated by scientists, global organizations, and various 

regulatory bodies worldwide. Our findings regarding these definitions can be summarized as follows: 

 

1) The majority of definitions highlight the distinction between "traditional software" and AI/ML methodologies. 

2) Scientists tend to delve into the philosophical nuances of defining "intelligence," which often complicates the clear 

classification of specific methods as AI. 

3) Global organizations and regulators typically strive to formulate definitions that assist practitioners in categorizing 

specific methods as AI. However, pinpointing the exact boundary between AI and non-AI methods proves challenging. 

Some regulators opt not to define AI/ML explicitly and instead adopt a regulatory approach tailored to specific, 

narrowly defined domains. 

4) Regarding ML, the definitions put forth by scientists, global organizations, and regulators are generally more 

aligned compared to those for AI. Nevertheless, these definitions often lack the clarity necessary for unequivocally 

classifying specific methods as ML. 
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